Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 954: 176441, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307359

RESUMEN

Resmethrin, a type I pyrethroid insecticide, is frequently used globally in residential and farmland areas to control pests. Owing to the repeated administration of resmethrin, and particularly because of its lipophilic nature, residues have been detected in various environments, crops, and livestock. Previous studies have shown the adverse effects of resmethrin, including neurotoxicity and hepatotoxicity. However, the toxic effects of resmethrin on the female reproductive system have rarely been investigated. In the present study, we used two cell types, porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, to examine the toxic effects of resmethrin on implantation and its mechanisms. Our study showed that resmethrin exposure induced apoptosis and inhibited cell cycle progression, thereby reducing the viability of both cell types. In addition, calcium homeostasis was disrupted following resmethrin treatment, and disrupted calcium homeostasis impaired the mitochondrial membrane potential and mitochondrial respiration. In addition to mitochondrial dysfunction, GRP75 and ER stress-related proteins were upregulated. Furthermore, the AKT and MAPK cascades were altered, and reactive oxygen species production and inflammation occurred after resmethrin treatment. Ultimately, through various mechanisms, resmethrin decreased the migratory abilities, and it could diminish the crosstalk between the two cell lines and lower the probability of successful implantation. Overall, we demonstrated that resmethrin interfered with the implantation process by triggering various toxic mechanisms. This study presents, for the first time, evidence regarding the mechanisms through which resmethrin exerts toxic effects on the female reproductive system, thereby raising awareness regarding the potential implications of its widespread use.

2.
Mol Cells ; 47(5): 100065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679414

RESUMEN

Environmental pollutants, including endocrine disruptors, heavy metals, nanomaterials, and pesticides, have been detected in various ecosystems and are of growing global concern. The potential for toxicity to non-target organisms has consistently been raised and is being studied using various animal models. In this review, we focus on pesticides frequently detected in the environment and investigate their potential exposure to livestock. Owing to the reproductive similarities between humans and pigs, various in vitro porcine models, such as porcine oocytes, trophectoderm cells, and luminal epithelial cells, are used to verify reproductive toxicity. These cell lines are being used to study the toxic mechanisms induced by various environmental toxicants, including organophosphate insecticides, pyrethroid insecticides, dinitroaniline herbicides, and diphenyl ether herbicides, which persist in the environment and threaten livestock health. Collectively, these results indicate that these pesticides can induce female reproductive toxicity in pigs and suggest the possibility of adverse effects on other livestock species. These results also indicate possible reproductive toxicity in humans, which requires further investigation.


Asunto(s)
Contaminantes Ambientales , Reproducción , Animales , Femenino , Porcinos , Contaminantes Ambientales/toxicidad , Reproducción/efectos de los fármacos , Plaguicidas/toxicidad , Humanos
3.
Pestic Biochem Physiol ; 198: 105755, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225098

RESUMEN

Pyridaben is a widely used pyridazinone insecticide used to protect crops against insects and mites. The toxicity of pyridaben has been reported in mice, zebrafish, the human reproductive system, nervous system, and respiratory system. Pyridaben can also be ingested by dairy cattle through feed. However, the toxicity of pyridaben in cattle has not been investigated on. Thus, this study focuses on demonstrating the toxicity of pyridaben in the bovine mammary glands and with the generation milk in the bovine mammary epithelial cells, as it is crucial to the continuance of the amount and the quality of the milk produced. We started by analyzing the intracellular toxicity along with the impact of pyridaben on the cell cycle distribution and the transcription of associated genes. Pyridaben treatment induced cell cycle arrest accompanied the disruption in G1 and S phases with imbalanced cytosolic and mitochondrial calcium ion homeostasis, and caused a destruction of mitochondrial membrane potential. This eventually led to apoptosis of MAC-T cells. We also investigated in the impact that pyridaben has on MAPK signaling proteins, where phosphorylation of ERK1/2, JNK, and p38 were upregulateed. Moreover, examination of the effect of pyridaben in the inflammatory genes revealed hyperactivation of the inflammatory gene transcription. This is the first research to assess the negative outcomes that pyridaben could impose on dairy cattle and milk production.


Asunto(s)
Calcio , Sistema de Señalización de MAP Quinasas , Piridazinas , Bovinos , Animales , Humanos , Ratones , Calcio/metabolismo , Regulación hacia Arriba , Pez Cebra , Apoptosis , Células Epiteliales , Inflamación/metabolismo , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...