Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408538

RESUMEN

Radiotherapy is one of the most commonly used cancer therapies with many benefits including low toxicity to healthy tissues. However, a major problem in radiotherapy is cancer radioresistance. To enhance the effect of this kind of therapy several approaches have been proposed such as the use of radiosensitizers. A combined treatment of radiotherapy and radiosensitizing drugs leads to a greater effect on cancer cells than anticipated from the addition of both responses (synergism). In this study, high-definition FT-IR imaging was applied to follow lipid accumulation in prostate cancer cells as a response to X-ray irradiation, radiosensitizing drugs, and a combined treatment of X-rays and the drugs. Lipid accumulation induced in the cells by an increasing X-ray dose and the presence of the drugs was analyzed using Principal Component Analysis and lipid staining. Finally, the synergistic effect of the combined therapy (X-rays and radiosensitizers) was confirmed by calculations of the integral intensity of the 2850 cm-1 band.


Asunto(s)
Neoplasias de la Próstata , Fármacos Sensibilizantes a Radiaciones , Masculino , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Lípidos/uso terapéutico
3.
Cell Mol Life Sci ; 80(11): 329, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851174

RESUMEN

Circulating endothelial cell progenitors originating from the bone marrow are considered to be a powerful tool in the repair of endothelium damage. Due to their unique properties, endothelial progenitors are now broadly investigated to assess their clinical significance in diseases e.g., associated with brain endothelial dysfunction. However, their distinction in terms of the expression of specific markers remains ambiguous. Additionally, endothelial progenitor cells may change their repertoire of markers depending on the microenvironment of the tissue in which they are currently located. Here, we applied the label-free Raman and FTIR imaging to discriminate mice brain endothelium and endothelial progenitors. Cells cultured separately showed distinctly different spectral signatures extracted from the whole cellular interior as well as the detected intracellular compartments (nucleus, cytoplasm, perinuclear area, and lipid droplets). Then, we used these spectroscopic signals to examine the cells co-cultured for 24 h. Principal cluster analysis showed their grouping with the progenitor cells and segregation from brain endothelium at a level of the entire cell machinery (in FTIR images) which resulted from biochemical alternations in the cytoplasm and lipid droplets (in Raman images). The models included in partial least square regression indicated that lipid droplets are the key element for the classification of endothelial progenitor-brain endothelial cells interactions.


Asunto(s)
Células Endoteliales , Espectrometría Raman , Animales , Ratones , Células Endoteliales/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman/métodos , Células Cultivadas , Gotas Lipídicas/metabolismo
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123228, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37579664

RESUMEN

Despite the invaluable role of transition metals in every living organism, it should be remembered that failure to maintain the proper balance and exceed the appropriate dose may have the opposite effect. In the era of such a popular and propagated need for supplementation in the media, one should bear in mind the harmful effects that may become the result of improper and excessive intake of transition metals. This article establishes the feasibility of Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopic imaging at the single-cell level to investigate the cellular response to various transition metals. These two non-destructive and perfectly complementary methods allow for in-depth monitoring of changes taking place within the cell under the influence of the agent used. HepG2 liver carcinoma cells were exposed to chromium, iron, cobalt, molybdenum, and nickel at 1 and 2 mM concentrations. Spectroscopic results were further supported by biological evaluation of selected caspases concentration. The caspase- 3, 6, 8, 9, and 12 concentrations were determined with the use of the enzyme-linked immunosorbent assay (ELISA) method. This study shows the induction of apoptosis in the intrinsic pathway by all studied transition metals. Cellular metabolism alterations are induced by mitochondrial metabolism changes and endoplasmic reticulum (ER) metabolism variations. Moreover, nickel induces not only the intrinsic pathway of apoptosis but also the extrinsic pathway of this process.


Asunto(s)
Carcinoma , Níquel , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Apoptosis , Hígado
5.
Nanoscale ; 15(27): 11693-11706, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37387227

RESUMEN

In this study for the first time, surface-enhanced Raman spectroscopy (SERS) and tip-enhanced infrared (TEIRA) nanospectrocopy together with a quartz crystal microbalance (QCM) are postulated as powerful tools for comprehensive qualitative and quantitative analyses of drug/metal nanocarrier conjugates. The development of efficient drug/carrier systems requires that the stability of the drug/carrier connection be estimated and the number of drug molecules immobilized on the carrier surface be determined. Thus, such a characterization study is highly desirable. Here, the SERS technique was applied to identify how erlotinib, a drug applied in non-small cell lung cancer (NSCLC) therapy, interacts with silver nanoparticles (AgNPs) that are considered as drug carriers. These investigations indicate that in the erlotinib/AgNP suspension, the drug strongly connects with the NPs mainly through the phenylacetylene moiety. The QCM was used to prepare an AgNP monolayer with a monitored degree of coverage and to perform controlled erlotinib adsorption as a next step. The results indicate that the drug forms a stable layer on the AgNP monolayer and also show the amount of the erlotinib molecules which underwent immobilization on the metal nanosurface. Simultaneously, it was identified how the erlotinib layer adsorbs on the AgNP monolayer using TEIRA nanospectroscopy with ultra-high spatial resolution. The obtained results show that the phenylacetylene, ethoxy, and methoxy moieties are mainly responsible for the drug/AgNP monolayer connection. Additionally, the performed studies also try to explain the surface-enhanced phenomena that occur during the TEIRA experiments and attempt to prove the statement that the "tip-enhanced" effect plays a crucial role in the detection of the thin erlotinib layer deposited on the AgNP monolayer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Tecnicas de Microbalanza del Cristal de Cuarzo , Clorhidrato de Erlotinib , Plata/química , Nanopartículas del Metal/química , Adsorción , Espectrometría Raman
6.
RSC Adv ; 13(27): 18854-18863, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37350866

RESUMEN

Cr(vi) is a harmful, carcinogenic agent with a high permeability rate throughout the lipid membranes. In an intracellular environment and during interactions with cellular membranes, it undergoes an instant reduction to lower oxidation states throughout radical states, recognized as the most dangerous factor for cells. The cellular membrane is the most visible cellular organelle in the interior and exterior of a cell. In this study, liposomes and non-lamellar inverted hexagonal phase lipid structures based on phosphoethanolamine (PE) were used as model cellular bilayers because of their simple composition, preparation procedure, and the many other properties of natural systems. The lipid membranes were subjected to 0.075 mM Cr(vi) for 15 min, after which the Cr content was removed via dialysis. This way, the remaining Cr content could be studied qualitatively and quantitatively. Using the combined XRF/XAS/EPR approach, we revealed that some Cr content (Cr(iii) and Cr(vi)) was still present in the samples even after long-term dialysis at a temperature significantly above the phase transition for the chosen liposome. The amount of bound Cr increased with increasing PE and -C[double bond, length as m-dash]C- bond content in lipid mixtures. Internal membrane order decreased in less fluid membranes, while in more liquified ones, internal order was only slightly changed after subjecting them to the Cr(vi) agent. The results suggest that the inverted hexagonal phase of lipid structures is much more sensitive to oxidation than the lamellar lipid phase, which can play an important role in the strong cytotoxicity of Cr(vi).

7.
Biochim Biophys Acta Gen Subj ; 1867(9): 130395, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271406

RESUMEN

Rapid and accurate diagnosis of any illness determines the success of treatment. The same applies to multiple sclerosis (MS), chronic, inflammatory, and neurodegenerative diseases (ND) of the central nervous system (CNS). Unfortunately, the definitive diagnosis of MS is prolonged and involves mainly clinical symptoms observation and magnetic resonance imaging (MRI) of the CNS. However, as we previously reported, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy shed new light on the minimally invasive, label-free, and rapid diagnosis of this illness through blood fraction. Herein we introduce Raman spectroscopy coupled with chemometric analysis to provide more detailed information about the biochemical changes behind MS. This pilot study demonstrates that mentioned combination may provide a new diagnostic biomarker and bring closer to rapid MS diagnosis. It has been shown that Raman spectroscopy provides lipid and carotenoid molecules as useful biomarkers which may be applied for both diagnosis and treatment monitoring.


Asunto(s)
Esclerosis Múltiple , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Esclerosis Múltiple/diagnóstico por imagen , Proyectos Piloto , Espectroscopía Infrarroja por Transformada de Fourier
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166615, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481485

RESUMEN

Despite invaluable advances in cervical cancer therapy, treatment regimens for recurrent or persistent cancers and low-toxicity alternative treatment options are scarce. In recent years, substances classified as adaptogens have been identified as promising drug sources for preventing and treating cancer-based diseases on their ability to attack multiple molecular targets. This paper establishes the effectiveness of inhibition of the neoplastic process by a withaferin A (WFA), an adaptogenic substance, based on an in vitro model of cervical cancer. This study explores for the first time the potential of high-definition vibrational spectroscopy methods, i.e. Fourier-transform infrared (FT-IR) and Raman spectroscopic (RS) imaging at the single-cell level to evaluate the efficacy of the adaptogenic drug. HeLa cervical cancer cells were incubated with various concentrations of WFA at different incubation times. The multimodal spectroscopic approach combined with partial least squares (PLS) regression allowed the identification of molecular changes (e.g., lipids, protein secondary structures, or nucleic acids) induced by WFA at the cellular level. The results clearly illustrate the enormous potential of WFA in inhibiting the proliferation of cervical cancer cells. WFA inhibited the growth of the studied cancer cell line in a dose-dependent manner. Such studies provide comprehensive information on the sensitivity of cells to adaptogenic drugs. This is a fundamental step towards determining the rate and nature of adaptogen-induced changes in cancer cells.


Asunto(s)
Neoplasias del Cuello Uterino , Witanólidos , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Diagnóstico por Imagen , Witanólidos/farmacología , Witanólidos/uso terapéutico
9.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012200

RESUMEN

The uptake and distribution of doxorubicin in the MCF7 line of breast-cancer cells were monitored by Raman measurements. It was demonstrated that bioavailability of doxorubicin can be significantly enhanced by applying Congo red. To understand the mechanism of doxorubicin delivery by Congo red supramolecular carriers, additional monolayer measurements and molecular dynamics simulations on model membranes were undertaken. Acting as molecular scissors, Congo red particles cut doxorubicin aggregates and incorporated them into small-sized Congo red clusters. The mixed doxorubicin/Congo red clusters were adsorbed to the hydrophilic part of the model membrane. Such behavior promoted transfer through the membrane.


Asunto(s)
Rojo Congo , Doxorrubicina , Rojo Congo/farmacología , Doxorrubicina/farmacología , Excipientes , Interacciones Hidrofóbicas e Hidrofílicas
10.
Biochem Biophys Res Commun ; 593: 40-45, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35051781

RESUMEN

Multiple sclerosis (MS) is a chronic, neurodegenerative disease of central nervous system, characterized by inflammation, demyelination, and gliosis. It is commonly known the rapid and accurate diagnosis of MS determines treatment success. The standard diagnosis contains clinical symptoms observation, magnetic resonance imaging (MRI) of central nervous system (CNS), and analysis of cerebrospinal fluid (CSF). Nonetheless, since CSF sampling is considered invasive and not all individuals are eligible for MRI we have decided to propose other diagnostic tool such as spectroscopy. Unlike lumbar puncture, blood collection is a routine procedure regarded as low-invasive; therefore, we used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. This technique was combined with chemometrics and detailed spectral assay to analyse blood plasma and serum samples collected from MS patients and healthy individuals. The results revealed a clear identification pattern of MS, suggesting the conformation changes of amide III collagen-like proteins in plasma and the dominance of amide I ß-sheet structures. Those changes in serum spectra seem to be useful for sample differentiation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Esclerosis Múltiple/patología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico por imagen , Análisis de Componente Principal
11.
Sci Rep ; 11(1): 21703, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737343

RESUMEN

The cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, ß-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.


Asunto(s)
Proteínas Priónicas/metabolismo , Proteínas Priónicas/ultraestructura , Zinc/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Enfermedades por Prión/metabolismo , Proteínas Priónicas/química , Priones/química , Unión Proteica , Conformación Proteica/efectos de los fármacos , Pliegue de Proteína , Estructura Secundaria de Proteína/fisiología , Zinc/fisiología
12.
Sci Rep ; 11(1): 18010, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504182

RESUMEN

Head and neck tumors can be very challenging to treat because of the risk of problems or complications after surgery. Therefore, prompt and accurate diagnosis is extremely important to drive appropriate treatment decisions, which may reduce the chance of recurrence. This paper presents the original research exploring the feasibility of Fourier transform infrared (FT-IR) and Raman spectroscopy (RS) methods to investigate biochemical alterations upon the development of the pleomorphic adenoma. Principal component analysis (PCA) was used for a detailed assessment of the observed changes and to determine the spectroscopic basis for salivary gland neoplastic pathogenesis. It is implied that within the healthy margin, as opposed to the tumoral tissue, there are parts that differ significantly in lipid content. This observation shed new light on the crucial role of lipids in tissue physiology and tumorigenesis. Thus, a novel approach that eliminates the influence of lipids on the elucidation of biochemical changes is proposed. The performed analysis suggests that the highly heterogeneous healthy margin contains more unsaturated triacylglycerols, while the tumoral section is rich in proteins. The difference in protein content was also observed for these two tissue types, i.e. the healthy tissue possesses more proteins in the anti-parallel ß-sheet conformation, whereas the tumoral tissue is dominated by proteins rich in unordered random coils. Furthermore, the pathogenic tissue shows a higher content of carbohydrates and reveals noticeable differences in nucleic acid content. Finally, FT-IR and Raman spectroscopy methods were proposed as very promising methods in the discrimination of tumoral and healthy tissues of the salivary gland.


Asunto(s)
Adenoma Pleomórfico/diagnóstico , Histocitoquímica/métodos , Neoplasias de las Glándulas Salivales/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Adenoma Pleomórfico/metabolismo , Adenoma Pleomórfico/patología , Adenoma Pleomórfico/cirugía , Carbohidratos/química , Carcinogénesis/metabolismo , Carcinogénesis/patología , Conjuntos de Datos como Asunto , Eosina Amarillenta-(YS) , Femenino , Hematoxilina , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Ácidos Nucleicos/metabolismo , Especificidad de Órganos , Análisis de Componente Principal , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Neoplasias de las Glándulas Salivales/metabolismo , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/cirugía , Triglicéridos/metabolismo
13.
Cells ; 10(4)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924045

RESUMEN

Fourier transform infrared spectroscopy (FT-IR) is widely used in the analysis of the chemical composition of biological materials and has the potential to reveal new aspects of the molecular basis of diseases, including different types of cancer. The potential of FT-IR in cancer research lies in its capability of monitoring the biochemical status of cells, which undergo malignant transformation and further examination of spectral features that differentiate normal and cancerous ones using proper mathematical approaches. Such examination can be performed with the use of chemometric tools, such as partial least squares discriminant analysis (PLS-DA) classification and partial least squares regression (PLSR), and proper application of preprocessing methods and their correct sequence is crucial for success. Here, we performed a comparison of several state-of-the-art methods commonly used in infrared biospectroscopy (denoising, baseline correction, and normalization) with the addition of methods not previously used in infrared biospectroscopy classification problems: Mie extinction extended multiplicative signal correction, Eiler's smoothing, and probabilistic quotient normalization. We compared all of these approaches and their effect on the data structure, classification, and regression capability on experimental FT-IR spectra collected from five different prostate normal and cancerous cell lines. Additionally, we tested the influence of added spectral noise. Overall, we concluded that in the case of the data analyzed here, the biggest impact on data structure and performance of PLS-DA and PLSR was caused by the baseline correction; therefore, much attention should be given, especially to this step of data preprocessing.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Próstata/citología , Próstata/diagnóstico por imagen , Línea Celular , Análisis Discriminante , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Análisis de Componente Principal , Espectroscopía Infrarroja por Transformada de Fourier
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119653, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773429

RESUMEN

Modern techniques of radiotherapy such as fractioned radiotherapy require applications of low doses of ionizing radiation (up to 10 Gy) for effective patient treatment. It is, therefore, crucial to understand the response mechanisms in cancer cells irradiated with low (clinical) doses. The cell's response to irradiation depends on a dose and post-irradiation time. Both factors should be considered when studying the influence of ionizing radiation on cancer cells. Thus, in the present study, PC-3 prostate cancer cells were irradiated with clinical doses of X-rays to determine dose- and time-dependent response to the irradiation. Raman spectroscopy and biological methods (MTT and comet assays) were applied for the analysis of biochemical changes in the cells induced by low doses of X-ray irradiation at 0 h and 24 h post-irradiation timepoints. Due to a limited view of the biochemical changes at the subcellular level given by single spectrum Raman measurements, Raman mapping of the whole cell area was performed. The results were compared with those obtained for cell irradiation with high doses. The analysis was based on the Partial Least Squares Regression (PLSR) method for the cytoplasmic and nuclear regions separately. Additionally, for the first time, irradiation classification was performed to confirm Raman spectroscopy as a powerful tool for studies on cancer cells treated with clinical doses of ionizing radiation.


Asunto(s)
Neoplasias de la Próstata , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/radioterapia , Rayos X
15.
J Phys Chem A ; 125(1): 50-56, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33395294

RESUMEN

The electronic structure of transition-metal oxides is a key component responsible for material's optical and chemical properties. Specifically for metal-oxide structures, the crystal-field interaction determines the shape, strength, and occupancy of electronic orbitals. Consequently, the crystal-field splitting and resulting unoccupied state populations can be foreseen as modeling factors of the photochemical activity. Herein, we study the formation of crystal-field effects during thermal oxidation of titanium in an ambient atmosphere and range of temperatures. The X-ray absorption spectroscopy is employed for quantitative analysis of average t2g-eg crystal-field splitting (Δoct) and relative t2g/eg bands occupancy. The obtained result shows that Δoct changes as a function of temperature from 1.97 eV for a passive oxide layer created on a Ti metal surface at room temperature to 2.41 eV at 600 °C when the material changes into the TiO2 rutile phase. On the basis of XAS data analysis, we show that the Δoct values determined from L2 and L3 absorption edges are equal, indicating that the 2p1/2 and 2p3/2 core holes screen the t2g and eg electronic states in a similar manner.

16.
Arch Biochem Biophys ; 697: 108718, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33296690

RESUMEN

Nanomechanical properties of living cells, as measured with atomic force microscopy (AFM), are increasingly recognized as criteria that differentiate normal and pathologically altered cells. Locally measured cell elastic properties, described by the parameter known as Young's modulus, are currently proposed as a new diagnostic parameter that can be used at the early stage of cancer detection. In this study, local mechanical properties of normal human prostate (RWPE-1) cells and a range of malignant (22Rv1) and metastatic prostate cells (LNCaP, Du145 and PC3) were investigated. It was found that non-malignant prostate cells are stiffer than cancer cells while the metastatic cells are much softer than malignant cells from the primary tumor site. Next, the biochemical properties of the cells were measured using confocal Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopies to reveal these cells' biochemical composition as malignant transformation proceeds. Nanomechanical and biochemical profiles of five different prostate cell lines were subsequently analyzed using partial least squares regression (PLSR) in order to identify which spectral features of the RS and FT-IR spectra correlate with the cell's elastic properties. The PLSR-based model could predict Young's modulus values based on both RS and FT-IR spectral information. These outcomes show not only that AFM, RS and FT-IR techniques can be used for discrimination between normal and cancer cells, but also that a linear correlation between mechanical response and biomolecular composition of the cells that undergo malignant transformation can be found. This knowledge broadens our understanding of how prostate cancer cells evolve thorough the multistep process of tumor pathogenesis.


Asunto(s)
Fenómenos Mecánicos , Neoplasias de la Próstata/patología , Fenómenos Biomecánicos , Línea Celular Tumoral , Humanos , Masculino , Metástasis de la Neoplasia
17.
Analyst ; 146(2): 646-654, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33206067

RESUMEN

Infrared (IR) imaging can be used for fast, accurate and non-destructive pathology recognition of biopsies when supported by machine learning algorithms. Transflection mode of measurements has the potential to be translated into the clinic due to economic reasons of large-scale imaging with the need for inexpensive substrates. Unfortunately, in this mode spectral distortions originating from light interference appear. Due to this fact transmission measurement mode is more frequently used in pathology recognition. Nevertheless, this measurement mode also is not devoid of spectral distortion effects like scattering. However, this effect is better understood and there are preprocessing algorithms to minimize it. In this work, we investigated the influence of interference effects on spectral quality of pancreatic tissues measured in transmission and transflection mode with Fourier tranform IR (FT-IR) microscopy using samples embedded with and without paraffin. The removal of paraffin leads to an altered magnitude of interference in transflection and provides a platform for a detailed analysis of its effect on the spectra of biological material, since the same sample is measured with different interference conditions. Moreover, the potential of transflection mode measurements in histological classification of analyzed samples was investigated and compared with classification results for transmission mode.


Asunto(s)
Imagen Óptica/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Humanos , Páncreas/diagnóstico por imagen , Control de Calidad
18.
Materials (Basel) ; 13(20)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050390

RESUMEN

The work presents a comprehensive vibrational analysis of the process of adsorption of threonine (Thr) onto an Fe surface with deposited Cu nanoparticles (NPs) (of about 4-5 nm in size) in a corrosive environment. The application of surface-enhanced Raman spectroscopy (SERS) and surface-enhanced infrared absorption spectroscopy (SEIRA) provides the opportunity for detailed description of adsorption geometry of amino acid onto a metal surface. The combination of conventional infrared spectroscopy (IR) with atomic force microscopy (AFM) resulted in a nano-SEIRA technique which made it possible to provide a precise description of adsorbate binding to the metal surface. The studies presented confirmed that there is a very good correlation between the spectra recorded by the SERS, SEIRA, and nano-SEIRA techniques. Threonine significantly influenced the process of corrosion of the investigated surface due to the existing strong interaction between the protonated amine and carboxylate groups and the CuNPs deposited onto the Fe surface. In addition, the application of two polarization modulations (s and p) in nano-SEIRA allows subtle changes to be observed in the molecule geometry upon adsorption, with the carboxylate group of Thr being almost horizontally oriented onto the metal surface; whereas the amine group that contains nitrogen is oriented perpendicular to this surface.

19.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961871

RESUMEN

Metabolic stress, such as lipotoxicity, affects the DNA methylation profile in pancreatic ß-cells and thus contributes to ß-cell failure and the progression of type 2 diabetes (T2D). Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that is involved in monounsaturated fatty acid synthesis, which protects pancreatic ß-cells against lipotoxicity. The present study found that SCD1 is also required for the establishment and maintenance of DNA methylation patterns in ß-cells. We showed that SCD1 inhibition/deficiency caused DNA hypomethylation and changed the methyl group distribution within chromosomes in ß-cells. Lower levels of DNA methylation in SCD1-deficient ß-cells were followed by lower levels of DNA methyltransferase 1 (DNMT1). We also found that the downregulation of SCD1 in pancreatic ß-cells led to the activation of adenosine monophosphate-activated protein kinase (AMPK) and an increase in the activity of the NAD-dependent deacetylase sirtuin-1 (SIRT1). Furthermore, the physical association between DNMT1 and SIRT1 stimulated the deacetylation of DNMT1 under conditions of SCD1 inhibition/downregulation, suggesting a mechanism by which SCD1 exerts control over DNMT1. We also found that SCD1-deficient ß-cells that were treated with compound c, an inhibitor of AMPK, were characterized by higher levels of both global DNA methylation and DNMT1 protein expression compared with untreated cells. Therefore, we found that activation of the AMPK/SIRT1 signaling pathway mediates the effect of SCD1 inhibition/deficiency on DNA methylation status in pancreatic ß-cells. Altogether, these findings suggest that SCD1 is a gatekeeper that protects ß-cells against the lipid-derived loss of DNA methylation and provide mechanistic insights into the mechanism by which SCD1 regulates DNA methylation patterns in ß-cells and T2D-relevant tissues.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Células Secretoras de Insulina/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilación , Animales , Línea Celular , Metilación de ADN/efectos de los fármacos , Regulación hacia Abajo , Silenciador del Gen , Histonas/metabolismo , Células Secretoras de Insulina/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/metabolismo , Espectrometría Raman , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Estearoil-CoA Desaturasa/genética , Regulación hacia Arriba
20.
J Biophotonics ; 13(12): e202000252, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32844593

RESUMEN

Exposure to ionizing radiation significantly affects biochemistry of cancer cells. The effect of irradiation can be divided into two stages, that is, the physicochemical stage and the biological response. Both effects induce different biochemical changes in the cells and should be analyzed as two separate phenomena. Thus, in the current study, Raman spectroscopy of prostate cancer cells fixed before (the physicochemical damage model) and just after (the biological response model) irradiation was undertaken to compare biochemical composition of irradiated cancer cells at both stages. Spectroscopic analysis of the cells was performed separately for cytoplasmic and nuclear regions. Biochemical changes of irradiated cells were analyzed using partial least squares regression (PLSR) method on the basis of the collected Raman spectra. Regression coefficients were therefore used to describe differences and similarities between biochemical composition of cancer cells undergoing the physicochemical stage and biological response. Additionally, PLSR models of both phenomena were compared for linear dose-dependence and a cross prediction.


Asunto(s)
Neoplasias de la Próstata , Espectrometría Raman , Núcleo Celular , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...