Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(2): e22745, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637913

RESUMEN

Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.


Asunto(s)
Lamina Tipo A , PPAR gamma , Humanos , Ratones , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Lamina Tipo A/metabolismo , Lámina Nuclear/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Adipocitos/metabolismo , Hipertrofia/metabolismo , Diferenciación Celular , Adipogénesis/genética , Células 3T3-L1
2.
Cancer Gene Ther ; 30(2): 302-312, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257975

RESUMEN

We have shown that insulin-like growth factor-1 (IGF-1) induces palmitoylation turnover of Flotillin-1 (Flot-1) in the plasma membrane (PM) for cell proliferation, after IGF-1 receptor (IGF-1R) signaling activation. However, the enzymes responsible for the turnover have not been identified. Herein, we show that acyl protein thioesterases-1 (APT-1) catalyzes Flot-1 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase-19 (ZDHHC-19) repalmitoylation of the depalmitoylated Flot-1 for the turnover in cervical cancer cells. The turnover prevented desensitization of IGF-1R via endocytosis and lysosomal degradation, thereby exerting excessive IGF-1R activation in cervical cancer cells. FLOT1, LYPLA1 and ZDHHC19 were highly expressed, and epithelial-to-mesenchymal transition (EMT)-inducing TIAM1 and GREM1 coordinately upregulated in malignant cervical cancer tissues. And blocking the turnover suppressed the EMT, migration, and invasion of cervical cancer cells. Our study identifies the specific enzymes regulating Flot-1 palmitoylation turnover, and reveals a novel regulatory mechanism of IGF-1-mediated cervical cancer progression.


Asunto(s)
Receptor IGF Tipo 1 , Neoplasias del Cuello Uterino , Femenino , Humanos , Receptor IGF Tipo 1/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias del Cuello Uterino/patología , Lipoilación , Proteostasis , Línea Celular Tumoral
3.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119363, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36165916

RESUMEN

Here, we show that Caveolin-2 (Cav-2) is an epigenetic regulator for adipogenesis. Upon adipogenic stimulation, inner nuclear membrane (INM)-targeted pY19-Cav-2 interacted with lamin A/C to disengage the repressed Cebpb promoter from lamin A/C, which facilitated the Cebpb promoter association with lamin B1. Consequently, pY19-Cav-2 recruited lysine demethylase 4b (KDM4b) for demethylation of histone H3 lysine 9 trimethylation (H3K9me3) and histone acetyltransferase GCN5 for acetylation of H3K27, and subsequently RNA polymerase II (Pol II) on Cebpb promoter for epigenetic activation of Cebpb, to initiate adipogenesis. Cav-2 knock-down abrogated the Cebpb activation and blocked the Pparg2 and Cebpa activation. Re-expression of Cav-2 restored Cebpb activation and adipogenesis in Cav-2-deficient preadipocytes. Our data identify a new mechanism by which the epigenetic activation of Cebpb is controlled at the nuclear periphery to promote adipogenesis.


Asunto(s)
Caveolina 2 , Lamina Tipo A , Caveolina 2/genética , Caveolina 2/metabolismo , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Lamina Tipo A/genética , Lisina/genética , Lámina Nuclear/metabolismo , ARN Polimerasa II/genética
4.
Biochem Biophys Res Commun ; 532(4): 535-540, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32896381

RESUMEN

N-myristoylation is a ubiquitous protein lipidation in eukaryotes, but regulatory roles for myristoylation on proteins still remain to be explored. Here, we show that N-myristoylation of Caveolin-2 (Cav-2) controls insulin signaling. Alternative translation initiation (ATI)-yielded truncated form of non-N-myristoylable Cav-2ß and various conditional Cav-2 mutants were compared to full-length form of N-myristoylable Cav-2α. Insulin induced insulin receptor (IR) tyrosine kinase-catalyzed Tyr-19 phosphorylation of N-myristoylable M14A Cav-2 and triggered activation of IR signaling cascade. In contrast, insulin induced ubiquitination of non-N-myristoylable M1A and G2A Cav-2 to facilitate protein-tyrosine phosphatase 1B interaction with IR which desensitized IR signaling through internalization. Metabolic labeling and click chemistry showed palmitoylation of M14A but not M1A and G2A Cav-2. Insulin did not induce phosphorylation of M1A and G2A Cav-2 and Cav-2ß. Like Cav-2α, G2A Cav-2 and Cav-2ß formed large homo-oligomers localized in lipid rafts. These findings show Cav-2 N-myristoylation plays a crucial role to coordinate its phosphorylation, palmitoylation, and ubiquitination to control insulin signaling.


Asunto(s)
Caveolina 2/metabolismo , Insulina/fisiología , Transducción de Señal , Animales , Caveolina 2/química , Línea Celular , Humanos , Lipoilación , Microdominios de Membrana/metabolismo , Ácido Mirístico/metabolismo , Fosforilación , Ratas , Receptor de Insulina/metabolismo , Tirosina/metabolismo , Ubiquitinación
5.
Oncogene ; 38(17): 3248-3260, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30631151

RESUMEN

Flotillin-1 (Flot-1) has been shown to regulate cancer progression, but the regulatory role of post-translational modifications of Flot-1 on cancers remains elusive. Herein, we show that up-regulated E2 conjugating enzyme UBC9 sumoylates Flot-1 at Lys-51 and Lys-195 with small ubiquitin-like modifier (SUMO)-2/3 modification in metastatic prostate cancer. Mitogen induced the sumoylation and nuclear translocation of Flot-1. The nuclear-targeted Flot-1 physically interacted with Snail, and inhibited Snail degradation through the proteasome in a sumoylation-dependent manner, thereby promoting epithelial-to-mesenchymal transition (EMT). Sumoylation of Flot-1 by up-regulated UBC9 in human metastatic prostate cancer tissues and prostate cancer cells with high metastatic potential positively correlated with the stabilization of Snail and the induction of Snail-mediated EMT genes in the metastatic prostate cancer. Our study reveals a new mechanism of sumoylated Flot-1-mediating Snail stabilization, and identifies a novel sumoylated Flot-1-Snail signaling axis in EMT of metastatic prostate cancer.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Sumoilación/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas/fisiología , Proteolisis , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Regulación hacia Arriba/fisiología
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2169-2182, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29604334

RESUMEN

Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2ß isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2ß-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2ß is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI.


Asunto(s)
Antígenos CD/metabolismo , Caveolina 2/metabolismo , Resistencia a la Insulina/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Células 3T3 , Animales , Antígenos CD/genética , Caveolina 2/genética , Codón Iniciador/genética , Endocitosis , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor de Insulina/genética
7.
Biochim Biophys Acta ; 1863(11): 2681-2689, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27552914

RESUMEN

Association of Caveolin-2 in the inner nuclear membrane specifically with A-type lamin is crucial for the maintenance of its Tyr-19 phosphorylation to promote insulin-response epigenetic activation at the nuclear periphery. Here, we identify that pY19-Caveolin-2 in the inner nuclear membrane exists as homo-oligomeric forms and the A-type lamin is required for sustenance of its oligomeric status. Oligomerization-defective and hence pY19-dephosphorylated monomeric Caveolin-2 in the inner nuclear membrane is unable to carry out Caveolin-2-mediated epigenetic activation of Egr-1 and JunB genes and transactivation of Elk-1 and STAT3 in response to insulin. The homo-oligomeric pY19-Caveolin-2 localizes in and recruits epigenetic modifiers to the A-type lamin-enriched inner nuclear membrane microdomain for the epigenetic activation. Our data show that A-type lamin-dependent Caveolin-2 homo-oligomerization in the inner nuclear membrane microdomain is a precondition for pY19-Caveolin-2-mediated insulin-response epigenetic activation at the nuclear periphery.


Asunto(s)
Caveolina 2/metabolismo , Epigénesis Genética/efectos de los fármacos , Insulina/farmacología , Lamina Tipo A/metabolismo , Membrana Nuclear/efectos de los fármacos , Caveolina 2/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Lamina Tipo A/genética , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Membrana Nuclear/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Interferencia de ARN , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Transfección , Tirosina , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
8.
J Cell Sci ; 128(11): 2179-90, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25908865

RESUMEN

Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled.


Asunto(s)
Lipoilación/fisiología , Proteínas de la Membrana/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Nucleic Acids Res ; 43(6): 3114-27, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25753664

RESUMEN

Insulin controls transcription to sustain its physiologic effects for the organism to adapt to environmental changes added to genetic predisposition. Nevertheless, insulin-induced transcriptional regulation by epigenetic factors and in defined nuclear territory remains elusive. Here we show that inner nuclear membrane (INM)-integrated caveolin-2 (Cav-2) regulates insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery. INM-targeted pY19-Cav-2 in response to insulin associates specifically with the A-type lamin, disengages the repressed Egr-1 and JunB promoters from lamin A/C through disassembly of H3K9me3, and facilitates assembly of H3K9ac, H3K18ac and H3K27ac by recruitment of GCN5 and p300 and the subsequent enrichment of RNA polymerase II (Pol II) on the promoters at the nuclear periphery. Our findings show that Cav-2 is an epigenetic regulator of histone H3 modifications, and provide novel mechanisms of insulin-response epigenetic activation at the nuclear periphery.


Asunto(s)
Caveolina 2/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Insulina/metabolismo , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Factores de Transcripción/genética , Animales , Caveolina 2/genética , Línea Celular , Epigénesis Genética/efectos de los fármacos , Células HEK293 , Histonas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Insulina/farmacología , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/genética , Regiones Promotoras Genéticas , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Activación Transcripcional
10.
Biochim Biophys Acta ; 1853(5): 1022-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25667086

RESUMEN

Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated.


Asunto(s)
Caveolina 2/metabolismo , Ácidos Grasos/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Acilación/efectos de los fármacos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Biocatálisis/efectos de los fármacos , Caveolina 2/química , Línea Celular , Cisteína/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Insulina/farmacología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Lipoilación/efectos de los fármacos , Ratones , Mitógenos/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
11.
Biochim Biophys Acta ; 1833(10): 2176-89, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23665048

RESUMEN

The role of caveolin-2 (cav-2), independently of caveolin-1 (cav-1) and caveolae, has remained elusive. Our data show that cav-2 exists in the plasma membrane (PM) in cells lacking cav-1 and forms homo-oligomeric complexes. Cav-2 did not interact with cavin-1 and cavin-2 in the PM. Rab6-GTP was required for the microtubule-dependent exocytic transport of cav-2 from the Golgi to the PM independently of cav-1. The cav-2-oligomerized noncaveolar microdomain was unaffected by cholesterol depletion and protected from shearing of silica-coated PM. Activation of insulin receptor (IR) was processed in the microdomain. Actin depolymerization affected the formation and sustenance of cav-2-oligomerized noncaveolar microdomain and attenuated IR recruitment to the microdomain thereby inhibiting IR signaling activation. Cav-2 shRNA stable cells and the cells ectopically expressing an oligomerization domain truncation mutant, cav-2∆47-86 exhibited retardation of IR signaling activation via the noncaveolar microdomain. Elevation in status of cav-2 expression rendered the noncaveolar activation of IR signaling in cav-1 down-regulated or/and cholesterol-depleted cells. Our findings reveal a novel homo-oligomeric cav-2 microdomain responsible for regulating activation of IR signaling in the PM.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Microdominios de Membrana/metabolismo , Animales , Transporte Biológico , Western Blotting , Caveolas/metabolismo , Caveolina 1/antagonistas & inhibidores , Caveolina 1/genética , Caveolina 2/antagonistas & inhibidores , Caveolina 2/genética , Células Cultivadas , Fibroblastos/citología , Guanosina Trifosfato/metabolismo , Inmunoprecipitación , Insulina/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Insulina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Fracciones Subcelulares
12.
Traffic ; 13(9): 1218-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22607032

RESUMEN

Here, we have identified a retrograde transport pathway of caveolin-2 (cav-2) for its regulatory function in the nucleus. Confocal microscopy analysis, photoactivation experiments and subcellular fractionation revealed that cav-2 localized in the Golgi was transported to the inner nuclear membrane (INM) in response to insulin. Exogenous caveolin-1 (cav-1) and P132L-cav-1 expression did not affect the Golgi localization and insulin-induced INM targeting of cav-2. Cav-2(DKV) mutant in the endoplasmic reticulum (ER) was unable to translocate to the INM in response to insulin. The GTP-bound form of Rab6 promoted, but Rab6 siRNA and the GDP-bound form of Rab6 abrogated, retrograde trafficking of cav-2 from the Golgi to ER. Colchicine or nocodazole treatment abolished insulin-induced INM targeting of cav-2. Knock down of gp210 inhibited insulin-induced import of cav-2 from ER/outer nuclear membrane (ONM) to the INM. The INM-targeted cav-2 prevented heterochromatinization and promoted transcriptional activation of Elk-1 and signal transducer and activator of transcription 3 (STAT3). The results provide molecular mechanisms for insulin-induced INM translocation of cav-2 initiated (i) by Golgi-to-ER retrograde trafficking of cav-2 via microtubule-based Rab6-GTP-dependent transport and subsequently processed (ii) by gp210-mediated import of cav-2 from ER/ONM to INM.


Asunto(s)
Caveolina 2/metabolismo , Insulina/farmacología , Membrana Nuclear/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/genética , Colchicina/farmacología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Nocodazol/farmacología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Mutación Puntual , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño , Ratas , Factor de Transcripción STAT3/metabolismo , Activación Transcripcional , Moduladores de Tubulina/farmacología , Proteína Elk-1 con Dominio ets/metabolismo , Proteínas de Unión al GTP rab/genética
13.
Int J Oncol ; 38(5): 1395-402, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21373752

RESUMEN

We investigated whether altering caveolin-2 (cav-2) expression affects the proliferation of cancer cells. Cav-2 was not detected in HepG2, SH-SY5Y and LN-CaP cells, and the loss of cav-2 expression was not restored by 5-aza-2'-deoxycytidine treatment. In contrast, C6, HeLa, A549, MCF7 and PC3M cells expressed cav-2. Effects of re-expression of exogenous cav-2 in HepG2, SH-SY5Y and LN-CaP cells, and siRNA-mediated down-regulation of endogenous cav-2 in C6, HeLa, A549, MCF7 and PC3M cells on cancer proliferation were examined by MTT assay, colony formation assay and flow cytometric analysis. Cav-2 transfection in HepG2 hepatocellular carcinoma cells and knockdown in C6 glioma cells caused reduction in cell proliferation and growth with retarded entry into the S phase. Cav-2 re-expression in SH-SY5Y neuroblastoma cells and depletion in HeLa epithelial cervical cancer and A549 lung adenocarcinoma cells promoted cancer cell proliferation. Luciferase reporter assay showed that transcriptional activation of Elk-1 and STAT3 was significantly decreased in cav-2-transfected HepG2 hepatocellular carcinoma and down-regulated C6 glioma cells. Our data suggest that cav-2 acts as a modulator of cancer progression.


Asunto(s)
Caveolina 2/fisiología , Proliferación Celular , Neoplasias/patología , Animales , Caveolina 2/antagonistas & inhibidores , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Glioma/patología , Células Hep G2 , Humanos , Neuroblastoma/patología , Ratas , Factor de Transcripción STAT3/fisiología , Proteína Elk-1 con Dominio ets/fisiología
14.
J Cell Mol Med ; 15(4): 888-908, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20455999

RESUMEN

Herein, we report that insulin-activated extracellular signal-regulated kinase (ERK) is translocated to the nuclear envelope by caveolin-2 (cav-2) and associates with lamin A/C in the inner nuclear membrane in response to insulin. We identified that the Ser¹54 -Val¹55 -Ser¹56 domain on the C-terminal of cav-2 is essential for insulin-induced phosphorylation and nuclear targeting of ERK and cav-2. In human embryonic kidney 293T cells, ERK was not activated and translocated to the nucleus by insulin in comparison to insulin-like growth factor-1 (IGF-1). However, insulin-stimulated activation of ERK was induced by exogenous addition of cav-2. The activated ERK associated and translocated with the cav-2 to the nucleus. In turn, cav-2 promoted phospho-ERK interaction with lamin A/C in the inner nuclear membrane. In contrast, ERK, but not cav-2, was phosphorylated and translocated to the nucleus by IGF-1. The nuclear targeted phospho-ERK failed to localize in the nuclear envelope in response to IGF-1. Together, our data demonstrate that translocation of phospho-ERK to the nuclear envelope is mediated by Ser¹54 -Val¹55 -Ser¹56 domain of cav-2 and this event is an insulin-specific action.


Asunto(s)
Caveolina 2/química , Caveolina 2/metabolismo , Núcleo Celular/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insulina/farmacología , Señales de Clasificación de Proteína , Animales , Células COS , Núcleo Celular/efectos de los fármacos , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Laminas/metabolismo , Proteínas Mutantes/metabolismo , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptor de Insulina/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad
15.
Biochem Biophys Res Commun ; 391(1): 49-55, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19895792

RESUMEN

Caveolin-2 regulation of insulin receptor (IR) tyrosine kinase activity was investigated. An insulin time course revealed that rapidly induced tyrosine phosphorylation of IR was steadily maintained over a 180 min time period. In parallel, insulin-exerted IR interaction with caveolin-2 was detected as early as 5 min throughout until 180 min. Down-regulation of caveolin-2 by caveolin-2 siRNA arrested specifically a long term activation of IR. The attenuation of IR activation resulted in retardation of rapamycin-sensitive pS727-STAT3 activation. As caveolin-2 tyrosine mutants were examined, Y27A-caveolin-2 explicitly impeded the long term IR activation by insulin, enhanced tyrosine dephosphorylation of IR, impaired tyrosine phosphorylation of IRS-1, and exerted the interaction between activated IR and SOCS-3. Together, we propose that pY27-caveolin-2 prolongs IR activation by its interaction with IR, thereby preventing IR interaction with SOCS-3.


Asunto(s)
Caveolina 2/metabolismo , Receptor de Insulina/biosíntesis , Animales , Caveolina 2/genética , Línea Celular , Activación Enzimática , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Mutación , Fosforilación , ARN Interferente Pequeño/genética , Ratas , Receptor de Insulina/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Tirosina/genética , Tirosina/metabolismo
16.
J Cell Mol Med ; 13(8A): 1549-64, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19778377

RESUMEN

Mitogenic regulation by caveolin-2 in response to insulin was investigated. Insulin triggered phosphorylation of caveolin-2 on tyrosine 19. Insulin increased the interaction between pY19-caveolin-2 and phospho-ERK, and that interaction was inhibited by a MEK inhibitor U0126. Insulin-induced interaction of caveolin-2 with phospho-ERK was prevented when tyrosine 19 is mutated to alanine. Insulin relocalized phospho-ERK and pY19-caveolin-2 to the nucleus and their nuclear co-localization was impaired by U0126. Down-regulation of caveolin-2 by caveolin-2 siRNA arrested the insulin-induced nuclear localization of ERK with no change in the insulin-stimulated ERK activation. Of consequence, the caveolin-2 siRNA attenuated the ERK-mediated c-Jun and cyclinD1 expression and DNA synthesis by insulin. In addition, actin cytoskeleton influenced the nuclear translocation of caveolin-2-ERK complex. Collectively, our findings underscore the importance of pY19-caveolin-2 with the spatial coordination by insulin in ERK-mediated mitogenic regulation of insulin signalling and indicate that the phosphorylation of pY19-caveolin-2 is required for actin cytoskeleton-dependent ERK nuclear import.


Asunto(s)
Actinas/metabolismo , Caveolina 2/metabolismo , Ciclo Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Insulina/farmacología , Fosfotirosina/metabolismo , Animales , Caveolina 2/deficiencia , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucósidos/farmacología , Humanos , Ratones , Octoxinol , Fosforilación/efectos de los fármacos , Polietilenglicoles/farmacología , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptor de Insulina/metabolismo , Solubilidad/efectos de los fármacos , Relación Estructura-Actividad
17.
Biochim Biophys Acta ; 1793(7): 1325-33, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19427337

RESUMEN

The regulatory function of caveolin-2 in signal transducer and activator of transcription 3 (STAT3) signaling by insulin was investigated. Insulin-induced increase in phosphorylation of STAT3 was reduced by caveolin-2 siRNA. Mutagenesis studies identified that phosphorylation of tyrosines 19 and 27 on caveolin-2 is required for the STAT3 activation. Caveolin-2 Y27A mutation decreased insulin-induced phosphorylation of STAT3 interacting with caveolin-2. pY27-Caveolin-2 was required for nuclear translocation of pY705-STAT3 in response to insulin. In contrast, caveolin-2 Y19A mutation influenced neither the phosphorylation of STAT3 nor nuclear translocation of pY705-STAT3. pY19-Caveolin-2, however, was essential for insulin-induced DNA binding of pS727-STAT3 and STAT3-targeted gene induction in the nucleus. Finally, insulin-induced transcriptional activation of STAT3 depended on phosphorylation of both 19 and 27 tyrosines. Together, our data reveal that phosphotyrosine-caveolin-2 is a novel regulator for transcriptional activation of STAT3 in response to insulin.


Asunto(s)
Caveolina 2/metabolismo , Fibroblastos/efectos de los fármacos , Hipoglucemiantes/farmacología , Insulina/farmacología , Factor de Transcripción STAT3/genética , Activación Transcripcional/efectos de los fármacos , Animales , Caveolina 2/antagonistas & inhibidores , Caveolina 2/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Immunoblotting , Inmunoprecipitación , Luciferasas , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Tirosina/metabolismo
18.
Exp Mol Med ; 41(4): 226-35, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19299911

RESUMEN

We investigated the effect of phenylephrine (PE)- and isoproterenol (ISO)-induced cardiac hypertrophy on subcellular localization and expression of caveolin-3 and STAT3 in H9c2 cardiomyoblast cells. Caveolin-3 localization to plasma membrane was attenuated and localization of caveolin-3 to caveolae in the plasma membrane was 24.3% reduced by the catecholamine- induced hypertrophy. STAT3 and phospho-STAT3 were up-regulated but verapamil and cyclosporin A synergistically decreased the STAT3 and phospho- STAT3 levels in PE- and ISO-induced hypertrophic cells. Both expression and activation of STAT3 were increased in the nucleus by the hypertrophy. Immunofluorescence analysis revealed that the catecholamine- induced hypertrophy promoted nuclear localization of pY705-STAT3. Of interest, phosphorylation of pS727- STAT3 in mitochondria was significantly reduced by catecholamine-induced hypertrophy. In addition, mitochondrial complexes II and III were greatly down- regulated in the hypertrophic cells. Our data suggest that the alterations in nuclear and mitochondrial activation of STAT3 and caveolae localization of caveolin-3 are related to the development of the catecholamine-induced cardiac hypertrophy.


Asunto(s)
Catecolaminas/farmacología , Caveolas/metabolismo , Caveolina 3/metabolismo , Mitocondrias/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Animales , Línea Celular , Hipertrofia/metabolismo , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...