Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(38): 42781-42789, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32840346

RESUMEN

Numerous reports have elucidated the advantages of SiOx-based anodes including their large capacities and superior cycling stabilities. However, these electrodes have not been optimized for use in electric vehicles (EVs), which demand even better performance stability at fast charging rates and high temperatures. Herein, we fabricated a novel solid electrolyte interphase (SEI) using nanodiamondseeds. The grown SEI comprised an assembly of pillars, with a height and diameter of approximately 600 and 250 nm, respectively. As a result, the Li||Ti-SiOx@C cell with a nanodiamond-containing electrolyte achieved a high capacity retention of 76.4% over 1000 cycles at 5 A g-1 and 50 °C, whereas the cell with no nanodiamond seeds showed a severe decay in the capacity and retained only 61.5% of its initial capacity. Furthermore, the NCM811||Ti-SiOx@C full cell constructed with the pillar-type SEI also showed a high capacity retention of 61.8% at 5 C (1 C = 200 mAh g-1) and 50 °C after 500 cycles, which was a significant improvement from the value (33.3%) demonstrated by its counterpart comprising the conventional SEI. The results obtained herein will enable the development of high-performance lithium-ion batteries.

2.
Int J Nanomedicine ; 11: 2381-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27307736

RESUMEN

The best strategy in the development of topical drug delivery systems may be to facilitate the permeation of drugs without any harmful effects, while staying on the skin surface and maintaining stability of the system. Nanodiamonds (NDs) play a key role with their excellent physicochemical properties, including high biocompatibility, physical adsorption, reactive oxygen species (ROS) scavenging capability, and photostabilizing activity. Z-average sizes of carboxylated ND (ND-COOH) agglutinate decreased significantly as the pH increased. Fluorescein-conjugated ND was observed only on the stratum corneum, and no sample diffused into the dermal layer even after 48 hours. Moreover, ND-COOH and ND-COOH/eugenol complex did not show significant toxic effects on murine macrophage cells. ND improved in vitro skin permeation >50% acting as a "drug reservoir" to maintain a high drug concentration in the donor chamber, which was supported by quartz crystal microbalance results. Moreover, ND-COOH could adsorb a drug amount equivalent to 80% of its own weight. A photostability study showed that ND-COOH increased the photostability ~47% with regard to rate constant of the eugenol itself. A significant decrease in ROS was observed in the ND-COOH and ND-COOH/eugenol complex compared with the negative control during intracellular ROS assay. Moreover, ROS and cupric reducing antioxidant capacity evaluation showed that ND-COOH had synergistic effects of antioxidation with eugenol. Therefore, ND-COOH could be used as an excellent topical drug delivery system with improved permeability, higher stability, and minimized safety issue.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanodiamantes/administración & dosificación , Nanodiamantes/química , Absorción Cutánea/efectos de los fármacos , Adsorción , Animales , Línea Celular , Estabilidad de Medicamentos , Eugenol/farmacocinética , Eugenol/farmacología , Fluoresceína/química , Concentración de Iones de Hidrógeno , Macrófagos/efectos de los fármacos , Ratones , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Sus scrofa , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...