Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1293149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029200

RESUMEN

Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.

2.
medRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873321

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) accounts for >50% of all heart failure world-wide and remains a major unmet medical need. The most effective recently approved treatments were first developed for diabetes, suggesting metabolic defects are paramount. Myocardial metabolomics in human HFpEF has identified reduced fatty acid and branched chain amino acid catabolism, but the status of glycolysis is unknown. Here we performed targeted metabolomics and protein analysis of glycolytic pathway enzymes in myocardial biopsies of patients with HFpEF versus HF with reduced ejection fraction (HFrEF0 or non-failing controls. Glucose was increased in HFpEF myocardium, but immediate downstream glycolytic metabolites (glucose-6 phosphate, fructose 1,6 diphosphate), were more reduced in HFpEF than the other groups, as were their associated synthetic enzymes hexokinase and phosphofructokinase. Pyruvate was also reduced in HFpEF versus controls. These changes were either not present or substantially less so in HFrEF. Suppression of proximal glycolysis was also coupled to lower metabolites and proteins in the pentose phosphate pathway but was independent of diabetes or obesity. These findings support marked metabolic inflexibility in HFpEF and identifies very proximal blockade in glucose metabolism. Efforts to improve metabolic use of carbohydrates in HFpEF will likely need to target these proximal glycolytic enzymes.

3.
Biotechnol J ; 18(12): e2300180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596881

RESUMEN

Butyrate-producing bacteria play a key role in human health, and recent studies have triggered interest in their development as next-generation probiotics. However, there remains limited knowledge not only on the identification of high-butyrate-producing bacteria in the human gut but also in the metabolic capacities for prebiotic carbohydrates and their interaction with the host. Herein, it was discovered that Roseburia intestinalis produces higher levels of butyrate and digests a wider variety of prebiotic polysaccharide structures compared with other human major butyrate-producing bacteria (Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia hominis). Moreover, R. intestinalis extracts upregulated the mRNA expression of tight junction proteins (TJP1, OCLN, and CLDN3) in human intestinal epithelial cells more than other butyrate-producing bacteria. R. intestinalis was cultured with human intestinal epithelial cells in the mimetic intestinal host-microbe interaction coculture system to explore the health-promoting effects using multiomics approaches. Consequently, it was discovered that live R. intestinalis only enhances purine metabolism and the oxidative pathway, increasing adenosine triphosphate levels in human intestinal epithelial cells, but that heat-killed bacteria had no effect. Therefore, this study proposes that R. intestinalis has potentially high value as a next-generation probiotic to promote host intestinal health.


Asunto(s)
Bacterias , Multiómica , Humanos , Bacterias/genética , Butiratos/metabolismo , Prebióticos , Células Epiteliales
4.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099033

RESUMEN

Gene mutations causing loss of dystrophin result in the severe muscle disease known as Duchenne muscular dystrophy (DMD). Despite efforts at genetic repair, DMD therapy remains largely palliative. Loss of dystrophin destabilizes the sarcolemmal membrane, inducing mechanosensitive cation channels to increase calcium entry and promote cell damage and, eventually, muscle dysfunction. One putative channel is transient receptor potential canonical 6 (TRPC6); we have shown that TRPC6 contributed to abnormal force and calcium stress-responses in cardiomyocytes from mice lacking dystrophin that were haplodeficient for utrophin (mdx/utrn+/- [HET] mice). Here, we show in both the HET mouse and the far more severe homozygous mdx/utrn-/- mouse that TRPC6 gene deletion or its selective pharmacologic inhibition (by BI 749327) prolonged survival 2- to 3-fold, improving skeletal and cardiac muscle and bone defects. Gene pathways reduced by BI 749327 treatment most prominently regulated fat metabolism and TGF-ß1 signaling. These results support the testing of TRPC6 inhibitors in human trials for other diseases as a novel DMD therapy.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Utrofina/genética , Utrofina/metabolismo
5.
Front Bioeng Biotechnol ; 10: 971739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118584

RESUMEN

Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host-Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.

6.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1072-L1088, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612064

RESUMEN

Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Modelos Biológicos , Mucosa Respiratoria/fisiología , Enfermedades Respiratorias/fisiopatología , Células Epiteliales Alveolares/citología , Animales , Evaluación Preclínica de Medicamentos , Humanos , Dispositivos Laboratorio en un Chip , Mucosa Respiratoria/citología , Ingeniería de Tejidos
7.
Adv Mater ; 24(25): 3344-9, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22628086

RESUMEN

An adhesive with high conductivity, flexibility, cyclability, oxidation resistance, and good adhesion is developed using microscale silver flakes, multiwalled carbon nanotubes decorated with nanoscale silver particles, and nitrile butadiene rubber. Light-emitting-diode chips are attached to the conductive, flexible adhesive pattern on a poly(ethylene terephthalate) substrate as a visual demonstration. The brightness is invariant during bending tests.


Asunto(s)
Adhesivos/química , Butadienos/química , Nanotubos de Carbono/química , Goma/química , Plata/química , Conductividad Eléctrica , Electrónica , Polietilenglicoles/química , Tereftalatos Polietilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA