Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMB Rep ; 56(9): 482-487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37574807

RESUMEN

Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in nichemediated LT-HSC maintenance. KAI1 activates TGF-ß1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LTHSCs that regulates dormancy through interaction with DARCexpressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LTHSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia. [BMB Reports 2023; 56(9): 482-487].


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Ciclooxigenasa 2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/fisiología , Macrófagos
3.
Korean Circ J ; 53(1): 1-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36627736

RESUMEN

Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.

4.
Cell Stem Cell ; 29(7): 1016-1017, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803223

RESUMEN

Duffy antigen receptor for chemokines (DARC)/CD234, also known as atypical chemokine receptor 1 (ACKR1), is a seven-transmembrane domain protein expressed on erythrocytes, vascular endothelium, and a subset of epithelial cells (Peiper et al., 1995). Previously, we reported that ACKR1 was expressed in bone marrow macrophages. ACKR1 interacts with CD82 on long-term repopulating hematopoietic stem cells (LT-HSCs) to maintain the dormancy of LT-HSCs during homeostasis (Hur et al., 2016). We also demonstrated that ACKR1 interacts with CD82 in HSCs from human umbilical cord blood (hUCB). These findings demonstrated that CD82 is a functional surface marker of LT-HSCs and this molecule maintains LT-HSC quiescence by interactions with ACKR1-expressing macrophages in mice and humans.


Asunto(s)
Médula Ósea , Sistema del Grupo Sanguíneo Duffy , Monocitos , Animales , Ratones , Sistema del Grupo Sanguíneo Duffy/metabolismo , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Receptores de Quimiocina/metabolismo
5.
J Hematol Oncol ; 14(1): 148, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530889

RESUMEN

BACKGROUND: Little is known about endogenous inhibitors of angiogenic growth factors. In this study, we identified a novel endogenous anti-angiogenic factor expressed in pericytes and clarified its underlying mechanism and clinical significance. METHODS: Herein, we found Kai1 knockout mice showed significantly enhanced angiogenesis. Then, we investigated the anti-angiogenic roll of Kai1 in vitro and in vivo. RESULTS: KAI1 was mainly expressed in pericytes rather than in endothelial cells. It localized at the membrane surface after palmitoylation by zDHHC4 enzyme and induced LIF through the Src/p53 pathway. LIF released from pericytes in turn suppressed angiogenic factors in endothelial cells as well as in pericytes themselves, leading to inhibition of angiogenesis. Interestingly, KAI1 had another mechanism to inhibit angiogenesis: It directly bound to VEGF and PDGF and inhibited activation of their receptors. In the two different in vivo cancer models, KAI1 supplementation significantly inhibited tumor angiogenesis and growth. A peptide derived from the large extracellular loop of KAI1 has been shown to have anti-angiogenic effects to block the progression of breast cancer and retinal neovascularization in vivo. CONCLUSIONS: KAI1 from PC is a novel molecular regulator that counterbalances the effect of angiogenic factors.


Asunto(s)
Proteína Kangai-1/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Animales , Femenino , Proteína Kangai-1/genética , Masculino , Microdominios de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Stem Cells Int ; 2021: 8873383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093711

RESUMEN

Although human induced pluripotent stem cells (iPSCs) can serve as a universal cell source for regenerative medicine, the use of iPSCs in clinical applications is limited by prohibitive costs and prolonged generation time. Moreover, allogeneic iPSC transplantation requires preclusion of mismatches between the donor and recipient human leukocyte antigen (HLA). We, therefore, generated universally compatible immune nonresponsive human iPSCs by gene editing. Transcription activator-like effector nucleases (TALENs) were designed for selective elimination of HLA DR expression. The engineered nucleases completely disrupted the expression of HLA DR on human dermal fibroblast cells (HDF) that did not express HLA DR even after stimulation with IFN-γ. Teratomas formed by HLA DR knockout iPSCs did not express HLA DR, and dendritic cells differentiated from HLA DR knockout iPSCs reduced CD4+ T cell activation. These engineered iPSCs might provide a novel translational approach to treat multiple recipients from a limited number of cell donors.

7.
Stem Cell Res Ther ; 12(1): 346, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116724

RESUMEN

BACKGROUND: The human skin-derived precursors (SKPs) are a good cell source for regeneration. However, the isolation of SKP from human skin is limited. To overcome this drawback, we hypothesized that the component of plant stem cells could convert human fibroblasts to SKPs. METHODS: Human dermal fibroblasts were treated with shikimic acid, a major component of Sequoiadendron giganteum callus extract. The characteristics of these reprogrammed cells were analyzed by qPCR, western blot, colony-forming assay, and immunofluorescence staining. Artificial human skin was used for CO2 laser-induced wound experiments. Human tissues were analyzed by immunohistochemistry. RESULTS: The reprogrammed cells expressed nestin (a neural precursor-specific protein), fibronectin, and vimentin and could differentiate into the ectodermal and mesodermal lineage. Nestin expression was induced by shikimic acid through the mannose receptor and subsequent MYD88 activation, leading to P38 phosphorylation and then CREB binding to the nestin gene promoter. Finally, we confirmed that shikimic acid facilitated the healing of cut injury and enhanced dermal reconstruction in a human artificial skin model. Moreover, in a clinical study with healthy volunteers, plant callus extracts increased the expression of stem cell markers in the basal layer of the epidermis and collagen deposit in the dermis. CONCLUSIONS: These results indicate that shikimic acid is an effective agent for tissue regeneration.


Asunto(s)
Células Madre Multipotentes , Ácido Shikímico , Diferenciación Celular , Células Cultivadas , Fibroblastos , Humanos , Piel
8.
Nat Commun ; 12(1): 3279, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078883

RESUMEN

Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Cardiomiopatías/prevención & control , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Rayos gamma/efectos adversos , Molécula L1 de Adhesión de Célula Nerviosa/genética , Animales , Antibióticos Antineoplásicos/toxicidad , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiotoxicidad/etiología , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Estudios de Casos y Controles , Técnicas de Cocultivo , Daño del ADN , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/efectos de la radiación , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de la radiación , Molécula L1 de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
9.
J Lipid Atheroscler ; 9(3): 419-434, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33024734

RESUMEN

Atherosclerosis, which is the most common chronic disease of the coronary artery, constitutes a vascular pathology induced by inflammation and plaque accumulation within arterial vessel walls. Both DNA methylation and histone modifications are epigenetic changes relevant for atherosclerosis. Recent studies have shown that the DNA methylation and histone modification systems are closely interrelated and mechanically dependent on each other. Herein, we explore the functional linkage between these systems, with a particular emphasis on several recent findings suggesting that histone acetylation can help in targeting DNA methylation and that DNA methylation may control gene expression during atherosclerosis.

11.
Biol Blood Marrow Transplant ; 26(8): e202-e208, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32439474

RESUMEN

Induced pluripotent stem cells (iPSCs) have opened up unprecedented opportunities for novel therapeutic options for precision medicine. Hematopoietic stem cell (HSC) donor pools with previously determined HLA types may be ideal sources for iPSC production. Based on the HLA distribution of cryopreserved cord blood units (CBUs) and registered bone marrow (BM) donors, we estimated how much of the Korean population could be covered by HLA-homozygous iPSCs. We analyzed a total of 143,866 Korean HSC donors (27,904 CBUs and 115,962 BM donors). Each donor sample was typed for the HLA-A, -B, and -DRB1 alleles at low to intermediate resolution by DNA-based molecular techniques: PCR sequence-specific oligonucleotide (PCR-SSOP), PCR with sequence-specific primers (PCR-SSP) and PCR with sequence-based typing (PCR-SBT). We also identified individuals possessing homozygous HLA haplotypes by direct counting. The matching probabilities for zero-mismatch transplantation were calculated for 143,866 Koreans and 50 million potential Korean patients. Among the HSC donor pool, 17 HLA-A alleles, 41 HLA-B alleles, and 13 HLA-DRB1 alleles, as well as 128 homozygous HLA-A-B-DRB1 haplotypes, were identified at serologic equivalents, and those haplotypes cumulatively matched 93.20% of the 143,866 Korean donors as zero HLA-mismatch iPSC sources. Among the combinations of 2,056 haplotypes with frequencies ≥ 0.001% in a population of 50 million, those 128 homozygous haplotypes can provide 93.65% coverage for potential Korean recipients. Haplobanking of a reasonable number of HLA-A, -B, and -DRB1 homozygous iPSC lines derived from CBUs and cells of registered BM donors may be an efficient option for allogenic iPSC therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Alelos , Médula Ósea , Sangre Fetal , Cadenas HLA-DRB1/genética , Haplotipos , Células Madre Hematopoyéticas , Prueba de Histocompatibilidad , Humanos , Sistema de Registros , Donantes de Tejidos
12.
Sci Rep ; 10(1): 4326, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152475

RESUMEN

For successful tracheal reconstruction, tissue-engineered artificial trachea should meet several requirements, such as biocompatible constructs comparable to natural trachea, coverage with ciliated respiratory mucosa, and adequate cartilage remodeling to support a cylindrical structure. Here, we designed an artificial trachea with mechanical properties similar to the native trachea that can enhance the regeneration of tracheal mucosa and cartilage through the optimal combination of a two-layered tubular scaffold and human induced pluripotent stem cell (iPSC)-derived cells. The framework of the artificial trachea was fabricated with electrospun polycaprolactone (PCL) nanofibers (inner) and 3D-printed PCL microfibers (outer). Also, human bronchial epithelial cells (hBECs), iPSC-derived mesenchymal stem cells (iPSC-MSCs), and iPSC-derived chondrocytes (iPSC-Chds) were used to maximize the regeneration of tracheal mucosa and cartilage in vivo. After 2 days of cultivation using a bioreactor system, tissue-engineered artificial tracheas were transplanted into a segmental trachea defect (1.5-cm length) rabbit model. Endoscopy did not reveal granulation ingrowth into tracheal lumen. Alcian blue staining clearly showed the formation of ciliated columnar epithelium in iPSC-MSC groups. In addition, micro-CT analysis showed that iPSC-Chd groups were effective in forming neocartilage at defect sites. Therefore, this study describes a promising approach for long-term functional reconstruction of a segmental tracheal defect.


Asunto(s)
Condrocitos/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos , Andamios del Tejido , Tráquea/trasplante , Enfermedades de la Tráquea/cirugía , Animales , Células Cultivadas , Masculino , Impresión Tridimensional/instrumentación , Conejos , Regeneración , Enfermedades de la Tráquea/patología
13.
Eur Heart J ; 41(2): 239-252, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31419281

RESUMEN

AIMS: Proprotein convertase subtilisin/kexin type-9 (PCSK9), a molecular determinant of low-density lipoprotein (LDL) receptor (LDLR) fate, has emerged as a promising therapeutic target for atherosclerotic cardiovascular diseases. However, the precise mechanism by which PCSK9 regulates the internalization and lysosomal degradation of LDLR is unknown. Recently, we identified adenylyl cyclase-associated protein 1 (CAP1) as a receptor for human resistin whose globular C-terminus is structurally similar to the C-terminal cysteine-rich domain (CRD) of PCSK9. Herein, we investigated the role of CAP1 in PCSK9-mediated lysosomal degradation of LDLR and plasma LDL cholesterol (LDL-C) levels. METHODS AND RESULTS: The direct binding between PCSK9 and CAP1 was confirmed by immunoprecipitation assay, far-western blot, biomolecular fluorescence complementation, and surface plasmon resonance assay. Fine mapping revealed that the CRD of PCSK9 binds with the Src homology 3 binding domain (SH3BD) of CAP1. Two loss-of-function polymorphisms found in human PCSK9 (S668R and G670E in CRD) were attributed to a defective interaction with CAP1. siRNA against CAP1 reduced the PCSK9-mediated degradation of LDLR in vitro. We generated CAP1 knock-out mice and found that the viable heterozygous CAP1 knock-out mice had higher protein levels of LDLR and lower LDL-C levels in the liver and plasma, respectively, than the control mice. Mechanistic analysis revealed that PCSK9-induced endocytosis and lysosomal degradation of LDLR were mediated by caveolin but not by clathrin, and they were dependent on binding between CAP1 and caveolin-1. CONCLUSION: We identified CAP1 as a new binding partner of PCSK9 and a key mediator of caveolae-dependent endocytosis and lysosomal degradation of LDLR.


Asunto(s)
Aterosclerosis/genética , Proteínas Portadoras/genética , LDL-Colesterol/sangre , Mutación , Proproteína Convertasa 9/genética , Receptores de LDL/sangre , Animales , Aterosclerosis/metabolismo , Proteínas Portadoras/metabolismo , ADN/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Proproteína Convertasa 9/metabolismo
14.
Biomaterials ; 232: 119674, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31865194

RESUMEN

Many studies have shown the existence of cardiac stem cells in the myocardium and epicardial progenitor cells in the epicardium. However, the characteristics of stem cells in the endocardium has not been fully elucidated. In this study, we investigated the origin of newly identified cells in the blood and their therapeutic potential. The new population of cells, identified from human peripheral blood, was quite different from previously reported stem cells. These newly identified cells, which we named Circulating Multipotent Stem (CiMS) cells, were multipotent, and therefore differentiated into multiple lineages in vitro and in vivo. In order to determine the origin of these cells, we collected peripheral blood from a group of patients who underwent bone marrow, liver, heart, or kidney transplantation. We identified the endocardium as the origin of these cells because the Short Tandem Repeat profile of CiMS cells from the recipient had changed from the recipient's profile to the donor's profile after heart transplantation. CiMS cells significantly increased after stimuli to the endocardium, such as catheter ablation for arrhythmia or acute myocardial infarction. CiMS cells circulate in human peripheral blood and are easily obtainable, suggesting that these cells could be a promising tool for cell therapy.


Asunto(s)
Endocardio , Células Madre Multipotentes , Infarto del Miocardio , Diferenciación Celular , Humanos , Antígenos Comunes de Leucocito , Infarto del Miocardio/terapia , Miocardio , Factores de Transcripción NFATC , Molécula-1 de Adhesión Celular Endotelial de Plaqueta
16.
Arch Pharm Res ; 42(3): 195-205, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30877558

RESUMEN

Currently, coronary artery disease accounts for a large proportion of deaths occurring worldwide. Damage to the heart muscle over a short period of time leads to myocardial infarction (MI). The biological mechanisms of atherosclerosis, one of the causes of MI, have been well studied. Resistin, a type of adipokine, is closely associated with intravascular level of low-density lipoprotein cholesterol and augmentation of the expression of adhesion molecules in endothelial cells. Therefore, resistin, which is highly associated with inflammation, can progress into coronary artery disease. Adenylyl cyclase associated protein 1, a binding partner of resistin, also plays an important role in inducing pro-inflammatory cytokines. The induction of these cytokines can aggravate atherosclerosis by promoting severe plaque rupture of the lesion site. Recently, drugs, such as statins that can inhibit inflammation have been extensively studied. The development of effective new drugs that can directly or indirectly block pro-inflammatory cytokines may have a great potential in the treatment of coronary artery disease in the future.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Enfermedades Cardiovasculares/patología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología
17.
Biomaterials ; 192: 500-509, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30513475

RESUMEN

The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Fibroblastos/citología , Técnicas de Transferencia de Gen , Miocitos Cardíacos/citología , Animales , Línea Celular , Reprogramación Celular , Oro/química , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos C57BL
18.
BMB Rep ; 51(2): 85-91, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29335067

RESUMEN

Pluripotent stem cell (PSC) variations can cause significant differences in the efficiency of cardiac differentiation. This process is unpredictable, as there is not an adequate indicator at the undifferentiated stage of the PSCs. We compared global gene expression profiles of two PSCs showing significant differences in cardiac differentiation potential. We identified 12 up-regulated genes related to heart development, and we found that 4 genes interacted with multiple genes. Among these genes, Gata6 is the only gene that was significantly induced at the early stage of differentiation of PSCs to cardiomyocytes. Gata6 knock-down in PSCs decreased the efficiency of cardiomyocyte production. In addition, we analyzed 6 mESC lines and 3 iPSC lines and confirmed that a positive correlation exists between Gata6 levels and efficiency of differentiation into cardiomyocytes. In conclusion, Gata6 could be utilized as a biomarker to select the best PSC lines to produce PSC-derived cardiomyocytes for therapeutic purposes. [BMB Reports 2018; 51(2): 85-91].


Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA6/metabolismo , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Línea Celular , Linaje de la Célula , Proliferación Celular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células Endoteliales/citología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/citología
19.
BMB Rep ; 51(5): 242-248, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29335068

RESUMEN

Induced pluripotent stem cells (iPSCs) show great promise for replacing current stem cell therapies in the field of regenerative medicine. However, the original method for cellular reprogramming, involving four exogenous transcription factors, is characterized by low efficiency. Here, we focused on using epigenetic modifications to enhance the reprogramming efficiency. We hypothesized that there would be a new reprogramming factor involved in DNA demethylation, acting on the promoters of pluripotency-related genes. We screened proteins that bind to the methylated promoter of Oct4 and identified Zinc finger protein 127 (Zfp127), the functions of which have not yet been identified. We found that Zfp127 binds to the Oct4 promoter. Overexpression of Zfp127 in fibroblasts induced demethylation of the Oct4 promoter, thus enhancing Oct4 promoter activity and gene expression. These results demonstrate that Zfp127 is a novel regulator of Oct4, and may become a potent target to improve cellular reprogramming. [BMB Reports 2018; 51(5): 242-248].


Asunto(s)
Impresión Genómica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Ribonucleoproteínas/genética , Animales , Metilación de ADN/genética , Luciferasas/metabolismo , Ratones Endogámicos C57BL , Proteína Homeótica Nanog/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligasas , Dedos de Zinc
20.
Stem Cells Transl Med ; 6(1): 293-305, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28170178

RESUMEN

Transplantation of stem cells into the brain attenuates functional deficits in the central nervous system via cell replacement, the release of specific neurotransmitters, and the production of neurotrophic factors. To identify patient-specific and safe stem cells for treating Alzheimer's disease (AD), we generated induced pluripotent stem cells (iPSCs) derived from mouse skin fibroblasts by treating protein extracts of embryonic stem cells. These reprogrammed cells were pluripotent but nontumorigenic. Here, we report that protein-iPSCs differentiated into glial cells and decreased plaque depositions in the 5XFAD transgenic AD mouse model. We also found that transplanted protein-iPSCs mitigated the cognitive dysfunction observed in these mice. Proteomic analysis revealed that oligodendrocyte-related genes were upregulated in brains injected with protein-iPSCs, providing new insights into the potential function of protein-iPSCs. Taken together, our data indicate that protein-iPSCs might be a promising therapeutic approach for AD. Stem Cells Translational Medicine 2017;6:293-305.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/terapia , Células Madre Pluripotentes Inducidas/trasplante , Animales , Conducta Animal , Encéfalo/patología , Diferenciación Celular , Disfunción Cognitiva/complicaciones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología , Oligodendroglía/metabolismo , Placa Amiloide/patología , Proteoma/metabolismo , Trasplante de Células Madre , Transferrina/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...