RESUMEN
Cannabidiol (CBD), which is derived from hemp, is gaining recognition because of its anti-inflammatory and lipid-modulating properties that could be utilized to treat acne. We conducted experiments to quantitatively assess the effects of CBD on acne-related cellular pathways. SEB-1 sebocytes and HaCaT keratinocytes were exposed to various CBD concentrations. CBD exhibited a concentration-dependent impact on cell viability and notably reduced SEB-1 viability; furthermore, it induced apoptosis and a significant increase in the apoptotic area at higher concentrations. Additionally, CBD remarkably reduced pro-inflammatory cytokines, including CXCL8, IL-1α, and IL-1ß. Additionally, it inhibited lipid synthesis by modulating the AMPK-SREBP-1 pathway and effectively reduced hyperkeratinization-related protein keratin 16. Simultaneously, CBD stimulated the synthesis of elastin, collagen 1, and collagen 3. These findings emphasize the potential of CBD for the management of acne because of its anti-inflammatory, apoptotic, and lipid-inhibitory effects. Notably, the modulation of the Akt/AMPK-SREBP-1 pathway revealed a novel and promising mechanism that could address the pathogenesis of acne.
Asunto(s)
Acné Vulgar , Apoptosis , Cannabidiol , Supervivencia Celular , Queratinocitos , Transducción de Señal , Humanos , Acné Vulgar/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Apoptosis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células HaCaT , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo III/metabolismo , Elastina/metabolismo , Glándulas Sebáceas/patología , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Línea CelularRESUMEN
Ultraviolet B (UVB) irradiation is major causative factor in skin aging. The aim of the present study was to investigate the protective effect of a 50% ethanol extract from Nypa fruticans (NF50E) against UVB-induced skin aging. The results indicated that NF50E exerted potent antioxidant activity (IC50 = 17.55 ± 1.63 and 10.78 ± 0.63 µg/mL for DPPH and ABTS-radical scavenging activity, respectively) in a dose-dependent manner. High-performance liquid chromatography revealed that pengxianencin A, protocatechuic acid, catechin, chlorogenic acid, epicatechin, and kaempferol were components of the extract. In addition, the extract exhibited elastase inhibitory activity (IC50 = 17.96 ± 0.39 µg/mL). NF50E protected against UVB-induced HaCaT cell death and strongly suppressed UVB-stimulated cellular reactive oxygen species generation without cellular toxicity. Moreover, topical application of NF50E mitigated UVB-induced photoaging lesions including skin erythema and skin thickness in BALB/C mice. NF50E treatment inhibited UVB-induced collagen degradation as well as MMP-1 and IL-1ß expressions and significantly stimulated SIRT1 expression. Furthermore, the extract treatment markedly suppressed the activation of NF-κB and AP-1 (p-c-Jun) by deactivating the p38 and JNK proteins. Taken together, current data suggest that NF50E exhibits potent antioxidant potential and protection against photoaging by attenuating MMP-1 activity and collagen degradation possibly through the downregulation of MAPK/NF-κB/AP-1 signaling and SIRT1 activation.
Asunto(s)
Metaloproteinasa 1 de la Matriz/metabolismo , Extractos Vegetales/química , Envejecimiento de la Piel/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de SeñalRESUMEN
: Prolonged inflammatory responses can lead to the development of several chronic diseases, such as autoimmune disorders and the development of natural therapeutic agents is required. A murine model was used to assess the anti-inflammatory effects of the megastigmane glucoside, icariside B2 (ICSB), and the assessment was carried out in vitro, and in vivo. The in vitro anti-inflammatory effects of ICSB were tested using LPS-stimulated BV2 cells, and the protein expression levels of inflammatory genes and cytokines were assessed. Mice were subcutaneously injected with 1% carrageenan (CA) to induce acute phase inflammation in the paw. Inflammation was assessed by measuring paw volumes hourly; subsequently, the mice were euthanized and the right hind paw skin was expunged and processed for reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. ICSB inhibits LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) generation by reducing the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). ICSB also inhibits the COX-2 enzyme with an IC50 value of 7.80±0.26 µM. Molecular docking analysis revealed that ICSB had a strong binding affinity with both murine and human COX-2 proteins with binding energies of -8 kcal/mol and -7.4 kcal/mol, respectively. ICSB also reduces the manifestation of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1ß, at their transcriptional and translational level. ICSB hinders inhibitory protein κBα (IκBα) phosphorylation, thereby terminating the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) nuclear translocation. ICSB also represses the mitogen-activated protein kinases (MAPKs) signaling pathways. ICSB (50 mg/kg) showed an anti-edema effect in CA-induced mice and suppressed the CA-induced increases in iNOS and COX-2 protein levels. ICSB attenuated inflammatory responses by downregulating NF-κB expression through interference with extracellular signal-regulated kinase (ERK) and p38 phosphorylation, and by modulating the expression levels of iNOS, COX-2, TNF-α, IL-1ß, and IL-6.
Asunto(s)
Antiinflamatorios/administración & dosificación , Carragenina/efectos adversos , Ciclohexanonas/química , Edema/tratamiento farmacológico , Epimedium/química , Glucósidos/química , Lipopolisacáridos/efectos adversos , Norisoprenoides/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/químicaRESUMEN
We investigated the anti-inflammatory activity of protopine (PTP) and sought to determine its mechanism of action in LPS-stimulated BV2 cells and a carrageenan (CA)-induced mouse model. Treatment with PTP (5, 10, and 20⯵M) significantly suppresses the secretion of NO and PGE2 in a concentration-dependent manner without affecting cell viability by downregulating iNOS and COX-2 expression in LPS-induced BV2 cells. PTP also attenuates the production of pro-inflammatory chemokines, such as MCP-1, and cytokines, including TNF-α, IL-1ß and IL-6, and augments the expression of the anti-inflammatory cytokine IL-10. In addition, PTP suppresses the nuclear translocation of NF-κB by hindering the degradation of IκB and downregulating the expression of mitogen-activated protein kinases (MAPKs), including p38, ERK1/2 and JNK protein. Furthermore, PTP treatment significantly suppresses CA-induced paw oedema in mice compared to that seen in untreated mice. Expression of iNOS and COX-2 proteins is also abrogated by PTP (50â¯mg/kg) treatment in CA-induced mice. PTP treatment also abolishes IκB phosphorylation, which hinders the activation of NF-κB. Collectively, these results suggest PTP has potential for attenuating CA- and LPS-induced inflammatory symptoms through modulation of MAPKs/NF-κB signaling cascades.