Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(7): 110191, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38974968

RESUMEN

Significant progress has been recently made in our understanding of the evolution of jasmonates biosynthesis and signaling. The bioactive jasmonate activating COI1-JAZ co-receptor differs in bryophytes and vascular plants. Dinor-iso-12-oxo-phytodienoic acid (dn-iso-OPDA) is the bioactive hormone in bryophytes and lycophytes. However, further studies showed that the full activation of hormone signaling in Marchantia polymorpha requires additional unidentified hormones. Δ4-dn-OPDAs were previously identified as novel bioactive jasmonates in M. polymorpha. In this paper, we describe the major bioactive isomer of Δ4-dn-OPDAs as Δ4-dn-iso-OPDA through chemical synthesis, receptor binding assay, and biological activity in M. polymorpha. In addition, we disclosed that Δ4-dn-cis-OPDA is a biosynthetic precursor of Δ4-dn-iso-OPDA. We demonstrated that in planta cis-to-iso conversion of Δ4-dn-cis-OPDA occurs in the biosynthesis of Δ4-dn-iso-OPDA, defining a key biosynthetic step in the chemical evolution of hormone structure. We predict that these findings will facilitate further understanding of the molecular evolution of plant hormone signaling.

2.
New Phytol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056290

RESUMEN

The NPR proteins function as salicylic acid (SA) receptors in Arabidopsis thaliana. AtNPR1 plays a central role in SA-induced transcriptional reprogramming whereby positively regulates SA-mediated defense. NPRs are found in the genomes of nearly all land plants. However, we know little about the molecular functions and physiological roles of NPRs in most plant species. We conducted phylogenetic and alignment analyses of NPRs from 68 species covering the significant lineages of land plants. To investigate NPR functions in bryophyte lineages, we generated and characterized NPR loss-of-function mutants in the liverwort Marchantia polymorpha. Brassicaceae NPR1-like proteins have characteristically gained or lost functional residues identified in AtNPRs, pointing to the possibility of a unique evolutionary trajectory for the Brassicaceae NPR1-like proteins. We find that the only NPR in M. polymorpha, MpNPR, is not the master regulator of SA-induced transcriptional reprogramming and negatively regulates bacterial resistance in this species. The Mpnpr transcriptome suggested roles of MpNPR in heat and far-red light responses. We identify both Mpnpr and Atnpr1-1 display enhanced thermomorphogenesis. Interspecies complementation analysis indicated that the molecular properties of AtNPR1 and MpNPR are partially conserved. We further show that MpNPR has SA-binding activity. NPRs and NPR-associated pathways have evolved distinctively in diverged land plant lineages to cope with different terrestrial environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...