Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Prod Bioprospect ; 14(1): 30, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743199

RESUMEN

Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant's economic value as herbal medicine or in food applications.

2.
Plant J ; 118(6): 2269-2295, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578789

RESUMEN

The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.


Asunto(s)
Domesticación , Regulación de la Expresión Génica de las Plantas , Pisum sativum , Metabolismo Secundario , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Pisum sativum/genética , Pisum sativum/metabolismo , Metabolismo Secundario/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Flavonoides/metabolismo
3.
Plants (Basel) ; 11(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365312

RESUMEN

Water avens (Geum rivale L.) is a common Rosaceae plant widely spread in Europe and North America. It is rich in biologically active natural products, some of which are promising as prospective pharmaceuticals. The extracts of water avens are well known for their triterpenoid metabolites and associated anti-inflammatory, antimicrobial and antioxidant activities. However, the polyphenolic profiles of G. rivale L. are still awaiting complete characterization. Accordingly, the contribution of its individual components to the antioxidant, antibacterial and neuroprotective activity of the extracts is still unknown. As this plant can be available on an industrial scale, a better knowledge of its properly-relevant constituents might give access to new highly-efficient pharmaceutical substances and functional products. Therefore, herein we comprehensively characterize the secondary metabolome of G. rivale by ESI-HR-MS, ESI-HR-MSn and NMR spectroscopy with a special emphasis on the polyphenolic composition of its aerial parts. Furthermore, a multilateral evaluation of the antioxidant, neuroprotective and antibacterial properties of the aqueous and ethyl acetate fractions of the total aqueous alcoholic extract as well as individual isolated polyphenols was accomplished. Altogether four phenolic acid derivatives (trigalloyl hexose, caffeoyl-hexoside malate, ellagic acid and ellagic acid pentoside), six flavonoids (three quercetin derivatives, kaempferol and three its derivatives and two isorhamnetin derivatives) and four tannins (HHDP-hexoside, proantocyanidin dimer, pedunculagin I and galloyl-bis-HHDP-hexose) were identified in this plant for the first time. The obtained aqueous and ethyl acetate fractions of the total extract as well as the isolated individual compounds showed pronounced antioxidant activity. In addition, a pronounced antibacterial activity against several strains was proved for the studied fractions (for ethyl acetate fraction the highest activity against E. coli АТСС 25922 and S. aureus strains ATCC 27853 and SG-511 (MIC 15.6 µg/mL) was observed; for aqueous fraction-against Staphylococcus aureus SG-511 (MIC 31.2 µg/mL)). However, the anti-neurodegenerative (neuroprotective) properties could not be found with the employed methods. However, the antibacterial activity of the fractions could not be associated with any of the isolated individual major phenolics (excepting 3-O-methylellagic acid). Thus, the aerial parts of water avens represent a promising source of polyphenolic compounds with antioxidant activity and therefrom derived human health benefits, although the single constituents isolated so far lack a dominant selectively bioactive constituent in the bioassays performed.

4.
Genes (Basel) ; 11(7)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635161

RESUMEN

CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein) genome editing is a powerful technology widely used in current genetic research. In the most simple and straightforward way it can be applied for a gene knockout resulting from repair errors, induced by dsDNA cleavage by Cas nuclease. For decades, zebrafish (Danio rerio) has been known as a convenient model object of developmental biology. Both commonly used nucleases SpCas9 (Streptococcus pyogenes Cas9) and LbCas12a (Lachnospiraceae bacterium Cas12a) are extensively used in this model. Among them, LbCas12a is featured with higher specificity and efficiency of homology-directed editing in human cells and mouse. But the editing outcomes for these two nucleases in zebrafish are still not compared quantitatively. Therefore, to reveal possible advantages of one nuclease in comparison to the other in the context of gene knockout generation, we compare here the outcomes of repair of the DNA breaks introduced by these two commonly used nucleases in zebrafish embryos. To address this question, we microinjected the ribonucleoprotein complexes of the both nucleases with the corresponding guide RNAs in zebrafish zygotes and sequenced the target gene regions after three days of development. We found that LbCas12a editing resulted in longer deletions and more rare inserts, in comparison to those generated by SpCas9, while the editing efficiencies (percentage of mutated copies of the target gene to all gene copies in the embryo) of both nucleases were the same. On the other hand, overlapping of protospacers resulted in similarities in repair outcome, although they were cut by two different nucleases. Thus, our results indicate that the repair outcome depends both on the nuclease mode of action and on protospacer sequence.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Proteínas de Pez Cebra/genética , Animales , Proteína 9 Asociada a CRISPR/normas , Sistemas CRISPR-Cas , Edición Génica/normas , Técnicas de Inactivación de Genes/normas , Pez Cebra
5.
Neurochem Res ; 43(6): 1191-1199, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29740748

RESUMEN

Amitriptyline is a commonly used tricyclic antidepressant (TCA) inhibiting serotonin and norepinephrine reuptake. The exact CNS action of TCAs remains poorly understood, necessitating new screening approaches and novel model organisms. Zebrafish (Danio rerio) are rapidly emerging as a promising tool for pharmacological research of antidepressants, including amitriptyline. Here, we examine the effects of chronic 2-week exposure to 10 and 50 µg/L amitriptyline on zebrafish behavior and monoamine neurotransmitters. Overall, the drug at 50 µg/L evoked pronounced anxiolytic-like effects in the novel tank test (assessed by more time in top, fewer transition and shorter latency to enter the top). Like other TCAs, amitriptyline reduced serotonin turnover, but also significantly elevated whole-brain norepinephrine and dopamine levels. The latter effect was not reported in this model previously, and accompanied higher brain expression of tyrosine hydroxylase (a rate-limiting enzyme of catecholamine biosynthesis), but unaltered expression of dopamine-ß-hydroxylase and monoamine oxidase (the enzymes of dopamine metabolism). This response may underlie chronic amitriptyline action on dopamine and norepinephrine neurotransmission, and contribute to the complex CNS profile of this drug observed both clinically and in animal models. Collectively, these findings also confirm the important role of monoamine modulation in the regulation of anxiety-related behavior in zebrafish, and support the utility of this organism as a promising in-vivo model for CNS drug screening.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Ansiolíticos/farmacología , Antidepresivos Tricíclicos/farmacología , Encéfalo/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso/efectos de los fármacos , Neuroquímica/métodos , Norepinefrina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra
6.
Artículo en Inglés | MEDLINE | ID: mdl-29604314

RESUMEN

The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.


Asunto(s)
Sistema Nervioso Central/metabolismo , Endocannabinoides/metabolismo , Modelos Animales , Receptores Opioides/metabolismo , Pez Cebra/metabolismo , Animales , Sistema Nervioso Central/efectos de los fármacos
7.
Exp Neurol ; 299(Pt A): 207-216, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28163161

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by motor, social and cognitive deficits that develop early during childhood. The pathogenesis of ASD is not well characterized and involves a multifaceted interaction between genetic, neurobiological and environmental factors. Animal (experimental) models possess evolutionarily conserved behaviors and molecular pathways that are highly relevant for studying ASD. The zebrafish (Danio rerio) is a relatively new animal model with promise for understanding the pathogenesis of complex brain disorders and discovering novel treatments. As a highly social and genetically tractable organism, zebrafish have recently been applied to model a variety of deficits relevant to ASD. Here, we discuss the developing utility of zebrafish models of ASD, as well as current behavioral, toxicological and genetic models of ASD, and future directions of research in this field.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Pez Cebra/genética , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Modelos Animales de Enfermedad , Humanos , Conducta Social
8.
Lab Anim (NY) ; 46(10): 378-387, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28984854

RESUMEN

The zebrafish (Danio rerio) is increasingly used in a broad array of biomedical studies, from cancer research to drug screening. Zebrafish also represent an emerging model organism for studying complex brain diseases. The number of zebrafish neuroscience studies is exponentially growing, significantly outpacing those conducted with rodents or other model organisms. Yet, there is still a substantial amount of resistance in adopting zebrafish as a first-choice model system. Studies of the repertoire of zebrafish neural and behavioral functions continue to reveal new opportunities for understanding the pathobiology of various CNS deficits. Although some of these models are well established in zebrafish, including models for anxiety, depression, and addiction, others are less recognized, for example, models of autism and obsessive-compulsive states. However, mounting data indicate that a wide spectrum of CNS diseases can be modeled in adult zebrafish. Here, we summarize recent findings using zebrafish CNS assays, discuss model limitations and the existing challenges, as well as outline future directions of research in this field.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Modelos Animales de Enfermedad , Pez Cebra , Animales , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/fisiopatología , Humanos
9.
Zebrafish ; 14(3): 197-208, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459655

RESUMEN

Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs.


Asunto(s)
Ansiedad/psicología , Conflicto Psicológico , Actividad Motora/fisiología , Pez Cebra/fisiología , Animales , Conducta Animal , Oscuridad , Modelos Animales de Enfermedad , Hidrocortisona/análisis , Luz , Estrés Psicológico
10.
Br J Pharmacol ; 174(13): 1925-1944, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28217866

RESUMEN

Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.


Asunto(s)
Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Fármacos del Sistema Nervioso Central/síntesis química , Fármacos del Sistema Nervioso Central/química , Evaluación Preclínica de Medicamentos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Pez Cebra
11.
Behav Processes ; 141(Pt 2): 229-241, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27919782

RESUMEN

Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational and cognitive neuroscience research. Both larval and adult zebrafish continue to increase our understanding of cognitive mechanisms and their genetic and pharmacological modulation. Here, we discuss the developing utility of zebrafish in understanding cognitive phenotypes and their deficits, relevant to a wide range human brain disorders. We also discuss the potential of zebrafish models for high-throughput genetic mutant and small molecule screening (e.g., amnestics, cognitive enhancers, neurodevelopmental/neurodegenerative drugs), which becomes critical for identifying novel candidate genes and molecular drug targets to treat cognitive deficits. In addition to discussing the existing challenges and future strategic directions in this field, we emphasize how zebrafish models of cognitive phenotypes continue to form an interesting and rapidly emerging new field in neuroscience.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Cognición/fisiología , Fenotipo , Animales , Modelos Animales de Enfermedad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...