Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 5(23): 5202-5214, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34555851

RESUMEN

Neonates possess a molecular variant of fibrinogen, known as fetal fibrinogen, characterized by increased sialic acid, a greater negative charge, and decreased activity compared with adults. Despite these differences, adult fibrinogen is used for the treatment of bleeding in neonates, with mixed efficacy. To determine safe and efficacious bleeding protocols for neonates, more information on neonatal fibrin clot formation and the influence of sialic acid on these processes is needed. Here, we examine the influence of sialic acid on neonatal fibrin polymerization. We hypothesized that the increased sialic acid content of neonatal fibrinogen promotes fibrin B:b knob-hole interactions and consequently influences the structure and function of the neonatal fibrin matrix. We explored this hypothesis through analysis of structural properties and knob:hole polymerization dynamics of normal and desialylated neonatal fibrin networks and compared them with those formed with adult fibrinogen. We then characterized normal neonatal fibrin knob:hole interactions by forming neonatal and adult clots with either thrombin or snake-venom thrombin-like enzymes that preferentially cleave fibrinopeptide A or B. Sialic acid content of neonatal fibrinogen was determined to be a key determinant of resulting clot properties. Experiments analyzing knob:hole dynamics indicated that typical neonatal fibrin clots are formed with the release of more fibrinopeptide B and less fibrinopeptide A than adults. After the removal of sialic acid, fibrinopeptide release was roughly equivalent between adults and neonates, indicating the influence of sialic acid on fibrin neonatal fibrin polymerization mechanisms. These results could inform future studies developing neonatal-specific treatments of bleeding.


Asunto(s)
Fibrinógeno , Ácido N-Acetilneuramínico , Adulto , Fibrina , Fibrinopéptido A , Humanos , Recién Nacido , Polimerizacion
2.
Cell Mol Bioeng ; 13(5): 393-404, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33184573

RESUMEN

INTRODUCTION: Fibrin scaffolds are often utilized to treat chronic wounds. The monomer fibrinogen used to create such scaffolds is typically derived from adult human or porcine plasma. However, our previous studies have identified extensive differences in fibrin network properties between adults and neonates, including higher fiber alignment in neonatal networks. Wound healing outcomes have been linked to fibrin matrix structure, including fiber alignment, which can affect the binding and migration of cells. We hypothesized that fibrin scaffolds derived from neonatal fibrin would enhance wound healing outcomes compared to adult fibrin scaffolds. METHODS: Fibrin scaffolds were formed from purified adult or neonatal fibrinogen and thrombin then structural analysis was conducted via confocal microscopy. Human neonatal dermal fibroblast attachment, migration, and morphology on fibrin scaffolds were assessed. A murine full thickness injury model was used to compare healing in vivo in the presence of neonatal fibrin, adult fibrin, or saline. RESULTS: Distinct fibrin architectures were observed between adult and neonatal scaffolds. Significantly higher fibroblast attachment and migration was observed on neonatal scaffolds compared to adults. Cell morphology on neonatal scaffolds exhibited higher spreading compared to adult scaffolds. In vivo significantly smaller wound areas and greater epidermal thickness were observed when wounds were treated with neonatal fibrin compared to adult fibrin or a saline control. CONCLUSIONS: Distinctions in neonatal and adult fibrin scaffold properties influence cellular behavior and wound healing. These studies indicate that fibrin scaffolds sourced from neonatal plasma could improve healing outcomes compared to scaffolds sourced from adult plasma.

3.
Anesthesiology ; 132(5): 1091-1101, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32011335

RESUMEN

BACKGROUND: Recent studies suggest that adult-specific treatment options for fibrinogen replacement during bleeding may be less effective in neonates. This is likely due to structural and functional differences found in the fibrin network between adults and neonates. In this investigation, the authors performed a comparative laboratory-based study between immature and adult human and porcine plasma samples in order to determine if piglets are an appropriate animal model of neonatal coagulopathy. METHODS: Adult and neonatal human and porcine plasma samples were collected from the Children's Hospital of Atlanta and North Carolina State University College of Veterinary Medicine, respectively. Clots were formed for analysis and fibrinogen concentration was quantified. Structure was examined through confocal microscopy and cryogenic scanning electron microscopy. Function was assessed through atomic force microscopy nanoindentation and clotting and fibrinolysis assays. Lastly, novel hemostatic therapies were applied to neonatal porcine samples to simulate treatment. RESULTS: All sample groups had similar plasma fibrinogen concentrations. Neonatal porcine and human plasma clots were less branched with lower fiber densities than the dense and highly branched networks seen in adult human and porcine clots. Neonatal porcine and human clots had faster degradation rates and lower clot stiffness values than adult clots (stiffness [mmHg] mean ± SD: neonatal human, 12.15 ± 1.35 mmHg vs. adult human, 32.25 ± 7.13 mmHg; P = 0.016; neonatal pig, 10.5 ± 8.25 mmHg vs. adult pigs, 32.55 ± 7.20 mmHg; P = 0.015). The addition of hemostatic therapies to neonatal porcine samples enhanced clot formation. CONCLUSIONS: The authors identified similar age-related patterns in structure, mechanical, and degradation properties between adults and neonates in porcine and human samples. These findings suggest that piglets are an appropriate preclinical model of neonatal coagulopathy. The authors also show the feasibility of in vitro model application through analysis of novel hemostatic therapies as applied to dilute neonatal porcine plasma.


Asunto(s)
Coagulación Sanguínea/fisiología , Fibrina/fisiología , Fibrinógeno/fisiología , Modelos Animales , Trombosis/fisiopatología , Adulto , Animales , Animales Recién Nacidos , Humanos , Recién Nacido , Especificidad de la Especie , Porcinos , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...