Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384790

RESUMEN

Natural product studies explore potential and interesting new compounds to discover innovative drugs. Nigella sativa (N. sativa) (Ranunculaceae) is traditionally used to treat diabetes. Flavonoids and triterpenoid mostly show anti-diabetic activity. The current study aim to identify new compounds by a systematic study of the anti-oxidant and anti-diabetic activity of aerial parts of N. sativa concerning. Phytochemicals were isolated from the methanolic extract of aerial parts of the plant by column chromatography and identified by nuclear magnetic resonance spectroscopy and mass spectroscopy. A new triterpenoid saponin glycoside was isolated along with flavonoids. The anti-diabetic study was carried out by DPPH, ABTS, α -glucosidase, and protein tyrosine phosphatase 1B assays at doses of 12.5 to 250 µM. The isolated phytochemicals were identified as 3-O-(ß-d-xylopyranosyl-(1-3)-α-l-rhamnopyrnaosyl-(1-2)-α-l-arabinopyranosyl]-28-O-(α-l-rhamno-pyranosyl-(1-4)-ß-d-glucopyranosyl-(1-6)-ß-d-glucopyranosyl] hederagenin (1), flaccidoside III (2), catechol (3), quercetin-3-gentiobiosides (4), magnoflorine (5), nigelflavonoside B (6), nigelloside (7), quercetin sphorotrioside (8), kaempferol-3, 7-diglucoside (9), kaempferol 3-O-rutinoside (10), rutin (11), 3-O-[α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranpsylhederagenin (12), 3ß,23,28-trihydroxyolean-12-ene-3-O-α-l-arabinopyranoside(1→4)-a-rhamnopyranosyl,(1→4)-ß-d-gluco-pyranoside (13), 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranpsyl]-28-O-ß-d-gluco-pyranosyl hederagenin (14), and α-hederin (15). These were isolated and are reported for the first time in this study. Compared 13 was identified as a new compound. Compound 2 was isolated for first time from the genus Nigella. Compound 6 was found to be the most active in the DPPH, and ABTS assays and compound 10 was found to be the most active in the α-glucosidase assay, with IC50 32.7 ± 0.1, 95.18 ± 0.9, 214.5 ± 0.0 µΜ, respectively. Compound 12, at a dose of 125 µΜ, showed anti-diabetic activity in a PTP1B assay with IC50 91.30 ± 2.5 µΜ. In conclusion, the anti-diabetic activity of N. sativa is due to its flavonoids and TTSGs. Therefore, our studies suggest that the aerial parts of N. sativa are also a valuable and alternate source of valuable phytochemicals that could be used to develop anti-oxidant and anti-diabetic medicines.


Asunto(s)
Antioxidantes/análisis , Diabetes Mellitus/tratamiento farmacológico , Nigella sativa/química , Ácido Oleanólico/análogos & derivados , Componentes Aéreos de las Plantas/química , Extractos Vegetales/análisis , Saponinas/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Benzotiazoles/química , Compuestos de Bifenilo/química , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Nigella sativa/enzimología , Ácido Oleanólico/análisis , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Picratos/química , Componentes Aéreos de las Plantas/enzimología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Saponinas/química , Saponinas/aislamiento & purificación , Saponinas/farmacología , Ácidos Sulfónicos/química , Triterpenos/análisis , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
2.
Crit Rev Eukaryot Gene Expr ; 26(3): 257-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27650989

RESUMEN

For the treatment of several types of cancers, tumors and malignancies, scientists are investigating natural sources to discover novel therapeutic agents from medicinal plants having diverse anticancer properties. Research on natural products is being conducted to identify unexplored phytochemical constituents that have been proven to have diverse pharmacological activities. Several medicinal plants have been reported to regulate the progression of different types of cancers, tumors, and malignancies. In this article, we briefly summarize the recent progress in exploring the anticancer properties of various medicinal plants reported to modulate the expression of p53 and the induction of apoptosis. These plants provide a rich source of chemo-protective agents that can ultimately be used to manage cancer progression.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Fitoterapia , Plantas Medicinales , Proteína p53 Supresora de Tumor/efectos de los fármacos , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatología , Proteína p53 Supresora de Tumor/genética
3.
Crit Rev Eukaryot Gene Expr ; 26(2): 143-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27480777

RESUMEN

In the biological system, reactive oxygen species (ROS) play a crucial role in the defense mechanisms of the body. ROS is responsible for the initiation of several cellular responses that can impart the harmful effects on the body, initiating biomolecular damage. Therefore, it is essential to counteract the dangerous effects produced by ROS, which is only possible through the use of antioxidants. Researchers are evaluating medicinal plants to discover and investigate the new antioxidant sources. Using natural antioxidants, beneficial effects on human health can be achieved. In this article, we summarize the recent investigations of the sources of naturally occurring antioxidants.


Asunto(s)
Antioxidantes/farmacología , Descubrimiento de Drogas , Plantas Medicinales/química , Antioxidantes/uso terapéutico
4.
Crit Rev Eukaryot Gene Expr ; 26(1): 49-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27278885

RESUMEN

Cancer develops due to an imbalance between cell proliferation and cell death. Various mechanisms of carcinogenesis as well as of novel anticancer agents that could be targeted for the treatment of cancer have been proposed by different studies. Among these, p21 is recognized as a potent cyclin-dependent kinase inhibitor that facilitates cell-cycle arrest by interacting with different stimuli such as p53, DNA repair process, CDK, E2F1, MYC, PCNA, STAT3 AP4, proteasomes, K1F, CDX2, and ER-α. p21 acts both as a tumor-suppressor gene and an inhibitor of apoptosis by interacting with various molecules and transition factors. In this review, we discuss the complex role of p21 in the development of cancer and as a target in its treatment. We conclude that, in the future, the tumor-suppressor activity of p21 should be the focus of a novel treatment strategies, which may lead to the devolvement of new and selective anti-cancer agents for the targeted therapy of cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/uso terapéutico , Progresión de la Enfermedad , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...