Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Acta Neuropathol ; 146(3): 451-475, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488208

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/patología , Enfermedades Neurodegenerativas/patología , Proteómica , Superóxido Dismutasa-1/genética , Neuronas Motoras/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361981

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) has been shown to counteract seizures when overexpressed or delivered into the brain in various animal models of epileptogenesis or chronic epilepsy. The mechanisms underlying this effect have not been investigated. We here demonstrate for the first time that GDNF enhances GABAergic inhibitory drive onto mouse pyramidal neurons by modulating postsynaptic GABAA receptors, particularly in perisomatic inhibitory synapses, by GFRα1 mediated activation of the Ret receptor pathway. Other GDNF receptors, such as NCAM or Syndecan3, are not contributing to this effect. We observed similar alterations by GDNF in human hippocampal slices resected from epilepsy patients. These data indicate that GDNF may exert its seizure-suppressant action by enhancing GABAergic inhibitory transmission in the hippocampal network, thus counteracting the increased excitability of the epileptic brain. This new knowledge can contribute to the development of novel, more precise treatment strategies based on a GDNF gene therapy approach.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Hipocampo , Proteínas Proto-Oncogénicas c-ret , Células Piramidales , Animales , Humanos , Ratones , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Sinapsis/metabolismo , Células Piramidales/metabolismo
4.
Front Neurosci ; 16: 972059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213737

RESUMEN

CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and ß-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.

5.
Acta Neuropathol Commun ; 10(1): 156, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309735

RESUMEN

Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Proteómica , Proteoma/genética , Cognición , Demencia Frontotemporal/genética
6.
Cell Rep ; 40(12): 111369, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130488

RESUMEN

Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.


Asunto(s)
Microglía , Neurogénesis , Adulto , Encéfalo , Humanos , Microglía/fisiología , Neuronas/fisiología
7.
Cereb Cortex ; 31(3): 1786-1806, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33230531

RESUMEN

The molecular repertoire of the "Ca2+-signaling toolkit" supports the specific kinetic requirements of Ca2+-dependent processes in different neuronal types. A well-known example is the unique expression pattern of calcium-binding proteins, such as parvalbumin, calbindin, and calretinin. These cytosolic Ca2+-buffers control presynaptic and somatodendritic processes in a cell-type-specific manner and have been used as neurochemical markers of GABAergic interneuron types for decades. Surprisingly, to date no typifying calcium-binding proteins have been found in CB1 cannabinoid receptor/cholecystokinin (CB1/CCK)-positive interneurons that represent a large population of GABAergic cells in cortical circuits. Because CB1/CCK-positive interneurons display disparate presynaptic and somatodendritic Ca2+-transients compared with other interneurons, we tested the hypothesis that they express alternative calcium-binding proteins. By in silico data mining in mouse single-cell RNA-seq databases, we identified high expression of Necab1 and Necab2 genes encoding N-terminal EF-hand calcium-binding proteins 1 and 2, respectively, in CB1/CCK-positive interneurons. Fluorescent in situ hybridization and immunostaining revealed cell-type-specific distribution of NECAB1 and NECAB2 throughout the isocortex, hippocampal formation, and basolateral amygdala complex. Combination of patch-clamp electrophysiology, confocal, and STORM super-resolution microscopy uncovered subcellular nanoscale differences indicating functional division of labor between the two calcium-binding proteins. These findings highlight NECAB1 and NECAB2 as predominant calcium-binding proteins in CB1/CCK-positive interneurons.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas del Ojo/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Animales , Colecistoquinina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1/metabolismo
8.
Nat Commun ; 11(1): 4363, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868797

RESUMEN

A specialized neurogenic niche along the ventricles accumulates millions of progenitor cells in the developing brain. After mitosis, fate-committed daughter cells delaminate from this germinative zone. Considering the high number of cell divisions and delaminations taking place during embryonic development, brain malformations caused by ectopic proliferation of misplaced progenitor cells are relatively rare. Here, we report that a process we term developmental anoikis distinguishes the pathological detachment of progenitor cells from the normal delamination of daughter neuroblasts in the developing mouse neocortex. We identify the endocannabinoid-metabolizing enzyme abhydrolase domain containing 4 (ABHD4) as an essential mediator for the elimination of pathologically detached cells. Consequently, rapid ABHD4 downregulation is necessary for delaminated daughter neuroblasts to escape from anoikis. Moreover, ABHD4 is required for fetal alcohol-induced apoptosis, but not for the well-established form of developmentally controlled programmed cell death. These results suggest that ABHD4-mediated developmental anoikis specifically protects the embryonic brain from the consequences of sporadic delamination errors and teratogenic insults.


Asunto(s)
Anoicis , Lisofosfolipasa , Neocórtex/embriología , Animales , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular , Trastornos del Espectro Alcohólico Fetal/etiología , Trastornos del Espectro Alcohólico Fetal/metabolismo , Expresión Génica , Células HEK293 , Humanos , Lisofosfolipasa/genética , Lisofosfolipasa/metabolismo , Ratones , Neocórtex/citología , Células-Madre Neurales , Filogenia
9.
Cereb Cortex ; 30(3): 1318-1329, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31402374

RESUMEN

The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.


Asunto(s)
Cadherinas/fisiología , Movimiento Celular , Interneuronas/fisiología , Células-Madre Neurales/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Animales , Ventrículos Laterales/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Mitosis
10.
Science ; 367(6477): 528-537, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31831638

RESUMEN

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Asunto(s)
Lesiones Encefálicas/inmunología , Encéfalo/inmunología , Uniones Intercelulares/inmunología , Microglía/inmunología , Neuronas/inmunología , Receptores Purinérgicos P2Y12/fisiología , Animales , Encéfalo/ultraestructura , Lesiones Encefálicas/patología , Calcio , Comunicación Celular/inmunología , Células HEK293 , Humanos , Ratones , Mitocondrias/inmunología , Canales de Potasio Shab/genética , Canales de Potasio Shab/fisiología , Transducción de Señal
11.
Nat Protoc ; 11(1): 163-83, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26716705

RESUMEN

Single-molecule localization microscopy (SMLM) is rapidly gaining popularity in the life sciences as an efficient approach to visualize molecular distribution with nanoscale precision. However, it has been challenging to obtain and analyze such data within a cellular context in tissue preparations. Here we describe a 5-d tissue processing and immunostaining procedure that is optimized for SMLM, and we provide example applications to fixed mouse brain, heart and kidney tissues. We then describe how to perform correlated confocal and 3D-superresolution imaging on these sections, which allows the visualization of nanoscale protein localization within labeled subcellular compartments of identified target cells in a few minutes. Finally, we describe the use of VividSTORM (http://katonalab.hu/index.php/vividstorm), an open-source software for correlated confocal and SMLM image analysis, which facilitates the measurement of molecular abundance, clustering, internalization, surface density and intermolecular distances in a cell-specific and subcellular compartment-restricted manner. The protocol requires only basic skills in tissue staining and microscopy.


Asunto(s)
Microscopía/métodos , Imagen Molecular/métodos , Programas Informáticos , Algoritmos , Animales , Transporte Biológico , Análisis por Conglomerados , Imagenología Tridimensional , Ratones , Microscopía Confocal , Relación Señal-Ruido , Coloración y Etiquetado , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA