Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Antibiotics (Basel) ; 13(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39200084

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) infections are associated with poor outcomes depending on patient's conditions, clinical severity and type of infection, and treatment is challenging given the limited therapeutic options available. The aim of this study was to describe the clinical and microbiological characteristics of two outbreaks caused by CRAB in an intensive care unit (ICU). In addition, the mechanisms of resistance detected in these strains and the treatment chosen according to the available therapeutic options were analyzed. Overall, 28 patients were included. Ten patients (35.71%) had ventilator-associated pneumonia (VAP), ten (35.71%) had a bloodstream infection (BSI), and eight (28.57%) were only colonized. Recurrent infection occurred in 25% (5/20) of infected patients. Two different strains of A. baumannii were isolated from the index patient of the first outbreak. The first strain belonged to the ST85 and carried the blaNDM-1 carbapenemase gene, while the second belonged to the ST2 and carried blaOXA-23, and blaOXA-66 carbapenemase genes. The phylogenetic analysis revealed that the ST2 strain was the cause of the major outbreak, and mutations in the AmpC gene were related to progressive increasing minimum inhibitory concentration (MIC) and finally, cefiderocol-resistance in one strain. The CRAB isolates from the second outbreak were also identified as ST2. Cefiderocol-resistant strains tests identified by the disc diffusion method were involved in 24% (6/25) of nosocomial infections. Using broth microdilution (BMD) ComASP® only, 33.3% (2/6) of these strains were cefiderocol-resistant. All-cause ICU mortality was 21.4%. Conclusions: Cefiderocol is the first approved siderophore cephalosporin for the treatment of CRAB infections. Cefiderocol-resistant strains were related with blaNDM-1 carbapenemase and mutations in the AmpC gene. Cefiderocol-resistant strains or that cannot be properly interpreted by disk diffusion, should be retested using BMD for definitive categorization.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38176845

RESUMEN

OBJECTIVES: To study the genomic epidemiology of Streptococcus pyogenes causing bloodstream infections (GAS-BSI) in a Spanish tertiary hospital during the United Kingdom invasive S. pyogenes outbreak alert. METHODS: Retrospective epidemiological analysis of GAS-BSI during the January-May 2017-2023 period. WGS was performed using Ion torrent GeneStudio™ S5 system for emm typing and identification of superantigen genes in S. pyogenes isolated during the 2022-2023 UK outbreak alert. RESULTS: During 2023, there were more cases of GAS-BSI compared to the same period of previous year with a non-significant increase in children. Fourteen isolates were sequenced. The emm1 (6/14, 42.9%) and emm12 (2/14, 14.3%) types predominated; 5 of 6 (75%) emm1 isolates were from the M1UK clone. The most detected superantigen genes were speG (12/14, 85.7%), speC (10/14, 71.4%), speJ (7/14, 50%), and speA (5/15, 33.3%). speA and speJ were predominant in M1UK clone. CONCLUSIONS: Our genomic epidemiology in 2023 is similar to the reported data from the UK outbreak alert in the same period and different from previous national S. pyogenes surveillance reports.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Niño , Humanos , Streptococcus pyogenes/genética , Estudios Retrospectivos , Centros de Atención Terciaria , Antígenos Bacterianos/genética , Infecciones Estreptocócicas/epidemiología , Superantígenos/genética , Reino Unido/epidemiología
3.
Pediatr Res ; 95(4): 1117-1123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086952

RESUMEN

BACKGROUND: Insulin might be associated with changes in infant gastrointestinal microbiota. The objective of this randomized controlled trial was to assess the efficacy of two doses of recombinant human(rh) enteral insulin administration compared to placebo in intestinal microbiota. METHODS: 19 preterm patients were recruited at the NICU of La Paz University Hospital (Madrid, Spain). Subjects received 2000 µIU of rh enteral insulin/ml(n = 8), 400 µIU of rh enteral insulin/ml(n = 6) or placebo(n = 5) for 28 days administered once per day. Extracted DNA from fecal samples collected at the beginning and end of treatment were analyzed. The 16S rRNA V4 region was amplified and sequenced in a Miseq(Illumina®) sequencer using 2 × 250 bp paired end. Resulting reads were filtered and analyzed using Qiime2 software. Metabolic activity was assessed by GC. RESULTS: Gestational age and birth weight did not differ between groups. At the phylum level, both insulin treated groups increased the relative abundance of Bacillota, while Pseudomonadota decreased. No change was observed in infants receiving placebo. At the genus level, insulin at both doses showed enriching effects on Clostridium. We found a significant increase in concentrations of fecal propionate in both rh insulin treated groups. CONCLUSION: Rh insulin may modify neonatal intestinal microbiota and SCFAs in preterm infants. IMPACT STATEMENT: Decrease of Pseudomonadota (former Proteobacteria phylum) and increase of Bacillota (former Firmicutes phylum) obtained in this study are the changes observed previously in low-risk infants for NEC. The administration of recombinant enteral insulin may modify the microbiota of preterm new-borns and SCFAs. Modulation of the microbiota may be a mechanism whereby insulin contributes to neonatal intestinal maturation and/or protection.


Asunto(s)
Enterocolitis Necrotizante , Microbioma Gastrointestinal , Lactante , Recién Nacido , Humanos , Recien Nacido Prematuro , Insulina , ARN Ribosómico 16S/genética , Intestinos , Enterocolitis Necrotizante/prevención & control
4.
Int J Infect Dis ; 136: 37-42, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37669725

RESUMEN

BACKGROUND: Little is known about the incidence of influenza among admissions to the cardiac intensive care unit (C-ICU), accuracy of clinical suspicion, and influenza vaccination uptake. We evaluated the incidence of influenza at C-ICU admission during the influenza season, potential underdiagnosis, and vaccination uptake. METHODS: Prospective study at five C-ICUs during the 2017-2020 influenza seasons. A nasopharyngeal swab was collected at admission from patients who consented (n = 788). Testing was with Xpert®XpressFlu/RSV. RESULTS: Influenza was detected in 43 patients (5.5%) (40 FluA; 3 FluB) and clinically suspected in 27 (62.8%). Compared to patients without influenza, patients with influenza more frequently had heart failure (37.2% vs 22.8%, P = 0.031), previous contact with relatives with influenza-like illnesses (23.3% vs 12.5%, P = 0.042), antimicrobial use (67.4% vs 23.2%, P <0.01), and need for mechanical ventilation (25.6% vs 14.5%, P = 0.048). Patients received oseltamivir promptly. We found no differences in mortality (11.6% vs 5.2%, P = 0.076). Patients with influenza more frequently had myocarditis (9.3% vs 0.9%, P <0.01) and pericarditis (7.0% vs 0.8%, P = 0.01). Overall, 43.0% of patients (339/788) were vaccinated (51.9% of those with a clear indication [303/584]). CONCLUSION: Influenza seems to be a frequently underdiagnosed underlying condition in admissions to the C-ICU. Influenza should be screened for at C-ICU admission during influenza epidemics.


Asunto(s)
Gripe Humana , Humanos , Gripe Humana/diagnóstico , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Estudios Prospectivos , Estaciones del Año , España/epidemiología , Unidades de Cuidados Intensivos
5.
Front Cell Infect Microbiol ; 13: 1180714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37201116

RESUMEN

Introduction: Intestinal colonization by Multi-Drug Resistant Organisms (MDROs) can pose a threat on the health of critically ill patients. The extent of colonization by these organisms is related to previous antibiotic treatments and their ability to cause infections among adult patients. The aim of this study is to determine the relationship between the intestinal Relative Loads (RLs) of selected antibiotic resistance genes, antibiotic consumption and extra-intestinal spread among critically ill pediatric patients. Methods: RLs of bla CTX-M-1-Family, bla OXA-1, bla OXA-48 and bla VIM were determined in 382 rectal swabs obtained from 90 pediatric critically ill patients using qPCRs. The RLs were compared to the patients' demographics, antibiotic consumption, and detection of MDROs from extra-intestinal sites. 16SrDNA metagenomic sequencing was performed for 40 samples and clonality analyses were done for representative isolates. Results and discussion: 76 (74.45%) patients from which 340 (89.01%) rectal swabs were collected had at least one swab that was positive for one of the tested genes. Routine cultures did not identify carbapenemases in 32 (45.1%) and 78 (58.2%) swabs that were positive by PCR for bla OXA-48 and blaVIM, respectively. RLs of above 6.5% were associated with extra-intestinal spread of blaOXA-48-harboring MDROs. Consumption of carbapenems, non-carbapenem ß-lactams, and glycopeptides were statistically associated with testing negative for bla CTX-M-1-Family and bla OXA-1 while the consumption of trimethoprim/sulfamethoxazole and aminoglycosides was associated with testing negative for blaOXA-48 (P<0.05). In conclusion, targeted qPCRs can be used to determine the extent of intestinal dominance by antibiotic resistant opportunistic pathogens and their potential to cause extra-intestinal infections among a critically ill pediatric population.


Asunto(s)
Enfermedad Crítica , beta-Lactamasas , Adulto , Humanos , Niño , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
6.
Microbiol Spectr ; 10(6): e0284222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36346231

RESUMEN

Pediatric liver transplantation (PLTx) is commonly associated with extensive antibiotic treatments that can produce gut microbiome alterations and open the way to dominance by multidrug-resistant organisms (MDROs). In this study, the relationship between intestinal Relative Loads (RLs) of ß-lactamase genes, antibiotic consumption, microbiome disruption, and the extraintestinal dissemination of MDROs among PLTx patients is investigated. 28 PLTx patients were included, from whom 169 rectal swabs were collected. Total DNA was extracted and blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were quantified via quantitative polymerase chain reaction (qPCR) and normalized to the total bacterial load (16SrRNA) through LogΔΔCt to determine the RLs. 16SrRNA sequencing was performed for 18 samples, and metagenomic sequencing was performed for 2. Patients' clinical data were retrieved from the hospital's database. At least one of the genes tested were detected in all of the patients. The RLs for blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were higher than 1% of the total bacterial population in 67 (80.73%), 56 (78.87%), 57 (77.03%) and 39 (61.9%) samples, respectively. High RLs for blaCTX-M-1-Family, blaOXA-1, and/or blaOXA-48, were positively associated with the consumption of carbapenems with trimethoprim-sulfamethoxazole and coincided with low diversity in the gut microbiome. Low RLs were associated with the consumption of noncarbapenem ß-lactams with aminoglycosides (P < 0.05). Extraintestinal isolates harboring the same gene(s) as those detected intraintestinally were found in 18 samples, and the RLs of the respective swabs were high. We demonstrated a relationship between the consumption of carbapenems with trimethoprim-sulfamethoxazole, intestinal dominance by MDROs and extraintestinal spread of these organisms among PLTx patients. IMPORTANCE In this study, we track the relative intestinal loads of antibiotic resistance genes among pediatric liver transplant patients and determine the relationship between this load, antibiotic consumption, and infections caused by antibiotic-resistant organisms. We demonstrate that the consumption of broad spectrum antibiotics increase this load and decrease the gut microbial diversity among these patients. Moreover, the high loads of resistance genes were related to the extraintestinal spread of multidrug-resistant organisms. Together, our data show that the tracking of the relative intestinal loads of antibiotic resistance genes can be used as a biomarker that has the potential to stop the extraintestinal spread of antibiotic-resistant bacteria via the measurement of the intestinal dominance of these organisms, thereby allowing for the application of preventive measures.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Trasplante de Hígado , Humanos , Niño , Farmacorresistencia Bacteriana Múltiple/genética , Combinación Trimetoprim y Sulfametoxazol/farmacología , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , beta-Lactamasas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
10.
Emerg Infect Dis ; 28(3): 752-753, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35202540

RESUMEN

Although human infections caused by Mycobacterium mageritense are rare, there are some case reports involving sinusitis, pneumonia, and hospital-acquired infections in adults. We report a case of lymphadenitis caused by M. mageritense in a child in Spain.


Asunto(s)
Linfadenitis , Mycobacteriaceae , Infecciones por Mycobacterium no Tuberculosas , Infecciones por Mycobacterium , Neumonía , Adulto , Niño , Familia , Humanos , Linfadenitis/diagnóstico , Linfadenitis/microbiología , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología
12.
Microorganisms ; 9(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34835397

RESUMEN

(1) Background: We determined the relevance of intestinal dominance by Serratia spp. during a neonatal outbreak over 13 weeks. (2) Methods: Rectal swabs (n = 110) were obtained from 42 neonates. Serratia spp. was cultured from swabs obtained from 13 neonates (Group 1), while the other 29 neonates were culture-negative (Group 2). Total DNA was extracted from rectal swabs, and quantitative PCRs (qPCRs) using Serratia- and 16SrRNA-gene-specific primers were performed. relative intestinal loads (RLs) were determined using ΔΔCt. Clonality was investigated by random amplified polymorphic DNA analysis and whole-genome sequencing. (3) Results: The outbreak was caused by Serratia marcescens during the first eight weeks and Serratia ureilytica during the remaining five weeks. Serratia spp. were detected by qPCR in all Group 1 neonates and eleven Group 2 neonates. RLs of Serratia spp. were higher in Group 1 as compared to Group 2 (6.31% vs. 0.09%, p < 0.05) and in the first swab compared to the last (26.9% vs. 4.37%, p < 0.05). Nine neonates had extraintestinal detection of Serratia spp.; eight of them were infected. RLs of the patients with extraintestinal spread were higher than the rest (2.79% vs. 0.29%, p < 0.05). (4) Conclusions: Intestinal dominance by Serratia spp. plays a role in outbreaks and extraintestinal spread.

13.
Microorganisms ; 9(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671631

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Madrid, Spain, on 25 February 2020. It increased in frequency very fast and by the end of May more than 70,000 cases had been confirmed by reverse transcription-polymerase chain reaction (RT-PCR). To study the lineages and the diversity of the viral population during this first epidemic wave in Madrid we sequenced 224 SARS-CoV-2 viral genomes collected from three hospitals from February to May 2020. All the known major lineages were found in this set of samples, though B.1 and B.1.5 were the most frequent ones, accounting for more than 60% of the sequences. In parallel with the B lineages and sublineages, the D614G mutation in the Spike protein sequence was detected soon after the detection of the first coronavirus disease 19 (COVID-19) case in Madrid and in two weeks became dominant, being found in 80% of the samples and remaining at this level during all the study periods. The lineage composition of the viral population found in Madrid was more similar to the European population than to the publicly available Spanish data, underlining the role of Madrid as a national and international transport hub. In agreement with this, phylodynamic analysis suggested multiple independent entries before the national lockdown and air transportation restrictions.

14.
PLoS One ; 16(2): e0246302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33591986

RESUMEN

BACKGROUND: Two automatable in-house protocols for high-troughput RNA extraction from nasopharyngeal swabs for SARS-CoV-2 detection have been evaluated. METHODS: One hundred forty one SARS-CoV-2 positive samples were collected during a period of 10-days. In-house protocols were based on extraction with magnetic beads and designed to be used with either the Opentrons OT-2 (OT-2in-house) liquid handling robot or the MagMAXTM Express-96 system (MMin-house). Both protocols were tested in parallel with a commercial kit that uses the MagMAXTM system (MMkit). Nucleic acid extraction efficiencies were calculated from a SARS-CoV-2 DNA positive control. RESULTS: No significant differences were found between both in-house protocols and the commercial kit in their performance to detect positive samples. The MMkit was the most efficient although the MMin-house presented, in average, lower Cts than the other two. In-house protocols allowed to save between 350€ and 400€ for every 96 extracted samples compared to the commercial kit. CONCLUSION: The protocols described harness the use of easily available reagents and an open-source liquid handling system and are suitable for SARS-CoV-2 detection in high throughput facilities.


Asunto(s)
Automatización de Laboratorios/métodos , Prueba de Ácido Nucleico para COVID-19/métodos , ARN Viral/normas , Automatización de Laboratorios/economía , Automatización de Laboratorios/normas , Prueba de Ácido Nucleico para COVID-19/economía , Prueba de Ácido Nucleico para COVID-19/normas , Costos y Análisis de Costo , Humanos , ARN Viral/química , ARN Viral/genética , Juego de Reactivos para Diagnóstico/economía , Juego de Reactivos para Diagnóstico/normas , Sensibilidad y Especificidad
16.
Clin Microbiol Infect ; 27(8): 1169.e7-1169.e12, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33031950

RESUMEN

OBJECTIVES: To determine quantitatively the extent of intestinal colonization by OXA-48-producing Klebsiella pneumoniae (KpOXA) in hospitalized patients. METHODS: The load of the OXA-48 ß-lactamase gene in rectal swabs from 147 colonized patients was measured by quantitative PCR. The load was calculated relative to the total bacterial population (represented by the 16S rRNA gene) using the ΔΔCt method and pure cultures of OXA-48-producing K. pneumoniae as reference samples. The relative loads of the epidemic K. pneumoniae clones ST11 and ST405 were also measured. RESULTS: The relative intestinal loads of the OXA-48 ß-lactamase gene, RLOXA-48, in hospitalized patients were high. The median RLOXA-48 was -0.42 (95% confidence interval (CI): -0.60 to -0.16), close to that of a pure culture of OXA-48-producing K. pneumoniae (RLOXA-48 = 0). In those patients colonized by the KpOXA clones ST11 (51/147, 34.7%) and ST405 (14/147, 9.5%), the relative loads of these clones were similarly high (median RLST11 = -1.1, 95% CI: -1.64 to -0.92; median RLST405 = -1.3, 95% CI: -1.76 to -0.96). Patients that had received previous antibiotic treatments and those that developed infections by KpOXA had significantly higher RLOXA-48 values: -0.32 (95% CI: -0.58 to -0.20) vs -1.07 (95% CI: -2.43 to -0.35) and -0.26 (-0.77 to -0.23) vs -0.47 (-0.74 to -0.28), respectively. CONCLUSIONS: Colonization by KpOXA in hospital patients involves intestinal loads much higher than the K. pneumoniae loads reported in the normal microbiota, reaching levels close to those of pure KpOXA cultures in many cases and largely replacing the host microbiota.


Asunto(s)
Carga Bacteriana , Intestinos/microbiología , Infecciones por Klebsiella , Antibacterianos , Proteínas Bacterianas/genética , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , ARN Ribosómico 16S , beta-Lactamasas/genética
17.
Gut Pathog ; 12: 15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280375

RESUMEN

BACKGROUND: The major reservoir of carbapenemase-producing Enterobacteriaceae (CPE) is the gastrointestinal tract of colonized patients. Colonization is silent and may last for months, but the risk of infection by CPE in colonized patients is significant. METHODS: Eight long-term intestinal carriers of OXA-48-producing Enterobacteriaceae (OXA-PE) were treated during 3 weeks with daily oral lactitol (Emportal®), Bifidobacterium bifidum and Lactobacillus acidophilus (Infloran®). Weekly stool samples were collected during the treatment period and 6 weeks later. The presence of OXA-PE was investigated by microbiological cultures and qPCR. RESULTS: At the end of treatment (EoT, secondary endpoint 1), four of the subjects had negative OXA-PE cultures. Three weeks later (secondary endpoint 2), six subjects were negative. Six weeks after the EoT (primary endpoint), three subjects had negative OXA-PE cultures. The relative intestinal load of OXA-PE decreased in all the patients during treatment. CONCLUSIONS: The combination of prebiotics and probiotics was well tolerated. A rapid reduction on the OXA-PE intestinal loads was observed. At the EoT, decolonization was achieved in three patients.Clinical Trials Registration: NCT02307383. EudraCT Number: 2014-000449-65.

18.
Front Microbiol ; 11: 451, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296400

RESUMEN

The first documented nosocomial outbreak caused by Serratia marcescens in Spain occurred in 1969 at the neonatal intensive care unit (NICU) of the tertiary La Paz Children's Hospital in Madrid, Spain, and based on the available phenotyping techniques at this time, it was considered as a monoclonal outbreak. Only 47 years later, another S. marcescens outbreak of an equivalent dimension occurred at the same NICU. The aim of the present study was to study isolates from these historical and contemporary outbreaks by phenotypic analysis and whole-genome sequencing techniques and to position these strains along with 444 publicly available S. marcescens genomes, separately comparing core genome and accessory genome contents. Clades inferred by both approaches showed high correlation, indicating that core and accessory genomes seem to evolve in the same manner for S. marcescens. Nine S. marcescens clusters were identified, and isolates were grouped in two of them according to sampling year. One exception was isolate 13F-69, the most genetically distant strain, located in a different cluster. Categorical functions in the annotated accessory genes of both collections were preserved among all isolates. No significant differences in frequency of insertion sequences in historical (0.18-0.20)-excluding the outlier strain-versus contemporary isolates (0.11-0.19) were found despite the expected resting effect. The most dissimilar isolate, 13F-69, contains a highly preserved plasmid previously described in Bordetella bronchiseptica. This strain exhibited a few antibiotic resistance genes not resulting in a resistant phenotype, suggesting the value of gene down expression in adaptation to long-term starvation.

19.
Viruses ; 12(3)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197299

RESUMEN

We used metagenomics to analyze one sputum sample from a patient with symptoms of a respiratory infection that yielded negative results for all pathogens tested. We detected two viral genomes that could be assembled and showed sequence similarity to redondoviruses, a recently described group within the CRESS-DNA viruses. One hundred sputum samples were screened for the presence of these viruses using specific primers. One sample was positive for the same two viruses, and another was positive for one of them. These findings raise questions about a possible role of redondoviruses in respiratory infections in humans.


Asunto(s)
Virus ADN/clasificación , Virus ADN/genética , Genoma Viral , Metagenómica , Infecciones del Sistema Respiratorio/virología , Esputo/virología , Humanos , Metagenómica/métodos , Filogenia , Proteínas Virales/genética
20.
PLoS One ; 14(5): e0216581, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31112570

RESUMEN

Adequate gut microbiota establishment is important for lifelong health. The aim was to sequentially analyze the gut microbiota establishment in low-birth-weight preterm neonates admitted to a single neonatal intensive care unit during their first 3 weeks of life, comparing two epidemiological scenarios. Seven control infants were recruited, and another 12 during a severe S. marcescens outbreak. Meconium and feces from days 7, 14, and 21 of life were collected. Gut microbiota composition was determined by 16S rDNA massive sequencing. Cultivable isolates were genotyped by pulsed-field gel electrophoresis, with four S. marcescens submitted for whole-genome sequencing. The expected bacterial ecosystem expansion after birth is delayed, possibly related to antibiotic exposure. The Proteobacteria phylum dominates, although with marked interindividual variability. The outbreak group considerably differed from the control group, with higher densities of Escherichia coli and Serratia to the detriment of Enterococcus and other Firmicutes. Curiously, obligate predators were only detected in meconium and at very low concentrations. Genotyping of cultivable bacteria demonstrated the high bacterial horizontal transmission rate that was confirmed with whole-genome sequencing for S. marcescens. Preterm infants admitted at NICU are initially colonized by homogeneous microbial communities, most of them from the nosocomial environment, which subsequently evolve according to the individual conditions. Our results demonstrate the hospital epidemiology pressure, particularly during outbreak situations, on the gut microbiota establishing process.


Asunto(s)
Infección Hospitalaria/microbiología , Brotes de Enfermedades , Heces/microbiología , Microbioma Gastrointestinal/genética , Recién Nacido de Bajo Peso/metabolismo , Recien Nacido Prematuro/metabolismo , Infecciones por Serratia/microbiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Ribosómico/genética , Femenino , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Serratia marcescens/genética , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...