Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Environ Interact ; 2(1): 1-15, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37283848

RESUMEN

Accumulation of certain phenolics is a well-known response of plants to enhanced UVB radiation (280-315 nm), but few experiments have compared the relative importance of different phenolic groups for UVB resilience. To study how an altered phenolic profile affects the responses and resilience of silver birch (Betula pendula) to enhanced UVB, we used RNA interference (RNAi) targeting dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), or anthocyanidin reductase (ANR) to change the accumulation of phenolics. The unmodified control line and RNAi-modified plants were grown for 51 days under ambient or +32% enhanced UVB dose in a greenhouse. RNAi greatly affected phenolic profile and plant growth. There were no interactive effects of RNAi and UVB on growth or photosynthesis, which indicates that the RNAi and unmodified control plants were equally resilient. UVB enhancement led to an accumulation of foliar flavonoids and condensed tannins, and an increase in the density of stem glands and glandular trichomes on upper leaf surfaces in both the control and RNAi-modified plants. Our results do not indicate a photoprotective role for condensed tannins. However, decreased growth of high-flavonoid low-tannin DFRi and ANRi plants implies that the balance of flavonoids and condensed tannins might be important for normal plant growth.

2.
J Chem Ecol ; 46(2): 217-231, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31879865

RESUMEN

Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant-herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.


Asunto(s)
Betula/química , Flavonoides/metabolismo , Mariposas Nocturnas/fisiología , Plantas Modificadas Genéticamente/química , Taninos/metabolismo , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Betula/enzimología , Betula/parasitología , Flavonoides/farmacología , Herbivoria/efectos de los fármacos , Interacciones Huésped-Parásitos , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Oxigenasas/antagonistas & inhibidores , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Interferencia de ARN , Taninos/farmacología
3.
Physiol Plant ; 155(4): 384-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25611902

RESUMEN

Phenolics, formed via a complex phenylpropanoid pathway, are important defensive agents in plants and are strongly affected by nitrogen (N) fertilization. Proanthocyanidins (PAs) are one possible endpoint of the phenylpropanoid pathway, and anthocyanidin reductase (ANR) represents a key enzyme in PA biosynthesis. In this study, the expression of silver birch (Betula pendula) anthocyanidin reductase BpANR was inhibited using the RNA interference (RNAi) method, in three consequent BpANR RNAi (ANRi birches) lines. The growth, the metabolites of the phenylpropanoid pathway, and the number of resin glands of the ANRi birches were studied when grown at two N levels. ANRi birches showed decreased growth and reduction in PA content, while the accumulation of total phenolics in both stems and leaves increased. Moreover, ANRi birches produced more resin glands than did wild-type (WT) birches. The response of ANRi birches to N depletion varied compared with that of WT birches, and in particular, the concentrations of some phenolics in stems increased in WT birches and decreased in ANRi birches. Because the inhibition of PAs biosynthesis via ANR seriously affected birch growth and resulted in accumulation of the precursors, the native level of PAs in plant tissues is assumed to be the prerequisite for normal plant growth. This draws attention to the real plant developmental importance of PAs in plant tissues.


Asunto(s)
Antocianinas/metabolismo , Betula/genética , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/genética , Fenoles/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Betula/crecimiento & desarrollo , Betula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proantocianidinas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
4.
Plant Cell Rep ; 33(8): 1377-88, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24792422

RESUMEN

KEY MESSAGE: Overexpression of Arabidopsis AtMYB12 transcription factor greatly increases the total phenolic and flavonol content in transgenic kale leaves. Flavonoids are a diverse group of plant secondary metabolites exhibiting a number of health-promoting effects. There has been a growing interest to develop biotechnological methods for the enhanced production of flavonoids in crop plants. AtMYB12 is an Arabidopsis transcription factor which specifically activates flavonol synthesis and its overexpression has led to increased flavonol accumulation in several transgenic plants. In the present study, AtMYB12 was overexpressed in a commercial cultivar of kale and the transgenic plants were tested both in in vitro and in semi-field conditions in cages under natural light. Using this method, a severalfold increase in both total phenolics content and flavonol accumulation was achieved. This study provides a reliable and efficient transformation protocol for kale and suggests the potential of this flavonol-enriched vegetable for the production of kaempferol.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassica/metabolismo , Flavonoles/metabolismo , Fenoles/metabolismo , Factores de Transcripción/genética , Agrobacterium , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica/genética , Flavonoles/análisis , Expresión Génica , Quempferoles/análisis , Quempferoles/metabolismo , Ingeniería Metabólica , Datos de Secuencia Molecular , Fenoles/análisis , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Transformación Genética , Transgenes , Verduras
5.
Photosynth Res ; 104(1): 61-74, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20407831

RESUMEN

Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.


Asunto(s)
Ozono/farmacología , Hojas de la Planta/metabolismo , Populus/metabolismo , Antioxidantes/metabolismo , Antioxidantes/fisiología , Butadienos/metabolismo , Dióxido de Carbono/metabolismo , Hemiterpenos/metabolismo , Metanol/metabolismo , Pentanos/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Populus/efectos de los fármacos , Populus/fisiología
7.
Physiol Plant ; 125(2): 268-280, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30727694

RESUMEN

B-function genes determine the identity of petals and stamens in the flowers of model plants such as Arabidopsis and Antirrhinum. Here, we show that a putative B-function gene BpMADS2, a birch homolog for PISTILLATA, is expressed in stamens and carpels of birch inflorescences. We also present a novel birch gene BpMADS8, a homolog for APETALA3/DEFICIENS, which is expressed in stamens. Promoter-GUS analysis revealed that BpMADS2 promoter is active in the receptacle of Arabidopsis flower buds while BpMADS8 promoter is highly specific in mature stamens. BpMADS2 promoter::BARNASE construct prevented floral organ development in Arabidopsis and tobacco. In birch, inflorescences with degenerated stamens and carpels were obtained. BpMADS8::BARNASE resulted in degeneration of stamens in Arabidopsis and birch causing male sterility. In tobacco, only sepals were developed instead of normal flowers. The results show that the BpMADS2::BARNASE construct can be used to specifically disrupt floral organ development in phylogenetically distant plant species. The stamen-specific promoter of BpMADS8 is a promising tool for biotechnological applications in inducing male sterility or targeting gene expression in the late stamen development.

8.
Physiol Plant ; 120(3): 491-500, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15032847

RESUMEN

The SBP-box gene family represents a group of plant-specific genes encoding putative transcription factors. Thus far, SBP-domain protein binding sites have been found in the promoters of Arabidopsis APETALA1 and Antirrhinum SQUAMOSA. A putative SBP-domain binding element has been observed in the promoter of BpMADS5, a close homologue of Arabidopsis FRUITFULL in silver birch (Betula pendula). A novel SBP-box gene from birch named BpSPL1 has been cloned and characterized. The nucleotide sequence of BpSPL1 is similar to Antirrhinum SBP2 and Arabidopsis SPL3, apart from the unique finding that BpSPL1 does not contain an intron typical to all other known SBP-box genes studied thus far. According to Northern blot analysis, BpSPL1 is expressed in birch inflorescences as well as in shoots and leaves. Studies using electrophoretic mobility shift assay demonstrate that there are nuclear proteins in birch inflorescences which specifically bind to the SBP binding element of the promoter of BpMADS5. BpSPL1 expressed in Escherichia coli also specifically binds to this element. According to Southern blot analysis, there are at least two SBP-box genes in birch. The results suggest that SBP-box genes are involved in the regulation of flower development in birch.

9.
Am J Bot ; 91(11): 1834-45, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21652331

RESUMEN

The phylogenetic relationships within the genus Betula (Betulaceae) were investigated using a part of the nuclear ADH gene and DNA sequences of the chloroplast matK gene with parts of its flanking regions. Two well-supported phylogenetic groups could be identified in the chloroplast DNA sequence: one containing the three American species B. lenta, B. alleghaniensis, and B. papyrifera and the other including all the other species studied. The ADH gene displayed more variation, and three main groups could be identified. In disagreement with the classical division of the genus Betula, B. schmidtii and B. nana grouped with the species in subgenus Betula, and B. ermanii grouped with species in subgenus Chamaebetula, including B. humilis and B. fruticosa. The ADH phylogeny suggests that several independent polyploidizations within the genus Betula could have taken place. The ADH and chloroplast phylogenies were in part incongruent due to the placement of B. papyrifera. The most likely reason for this seems to be cytoplasmic introgression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...