RESUMEN
OBJECTIVES: Host responses to infection are a major determinant of outcome. However, the existence of different response profiles in patients with endocarditis has not been addressed. Our objective was to apply transcriptomics to identify endotypes in patients with infective endocarditis. METHODS: A total of 32 patients with infective endocarditis were studied. Clinical data and blood samples were collected at diagnosis and RNA sequenced. Gene expression was used to identify two clusters (endocarditis endotype 1 [EE1] and endocarditis endotype 2 [EE2]). RNA sequencing was repeated after surgery. Transcriptionally active cell populations were identified by deconvolution. Differences between endotypes in clinical data, survival, gene expression, and molecular pathways involved were assessed. The identified endotypes were recapitulated in a cohort of COVID-19 patients. RESULTS: A total of 18 and 14 patients were assigned to EE1 and EE2, respectively, with no differences in clinical data. Patients assigned to EE2 showed an enrichment in genes related to T-cell maturation and a decrease in the activation of the signal transducer and activator of transcription protein family pathway, with higher counts of active T cells and lower counts of neutrophils. A total of 14 patients (nine in EE1 and five in EE2) were submitted to surgery. Surgery in EE2 patients shifted gene expression toward a EE1-like profile. In-hospital mortality was higher in EE1 (56% vs 14%, P = 0.027), with an adjusted hazard ratio of 12.987 (95% confidence interval 3.356-50). Translation of these endotypes to COVID-19 and non-COVID-19 septic patients yielded similar results in cell populations and outcome. CONCLUSIONS: Gene expression reveals two endotypes in patients with acute endocarditis, with different underlying pathogenetic mechanisms, responses to surgery, and outcomes.
Asunto(s)
COVID-19 , Endocarditis , Transcriptoma , Humanos , Masculino , Femenino , COVID-19/sangre , COVID-19/diagnóstico , Persona de Mediana Edad , Endocarditis/sangre , Endocarditis/diagnóstico , Anciano , Estudios Prospectivos , Perfilación de la Expresión Génica , SARS-CoV-2/genética , AdultoRESUMEN
Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift towards a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. Here, we explore the contribution of mechanical stretch as trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed in vitro to mechanical stretch, and senescence assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared to senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed notch signaling as a potential responsible for the epithelial-mesenchymal crosstalk, as blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.
RESUMEN
Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases.
Asunto(s)
Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Humanos , Hierro , Riñón , FibrosisRESUMEN
BACKGROUND: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit. METHODS: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings. RESULTS: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results. CONCLUSIONS: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.
Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Enfermedad Crítica , Unidades de Cuidados IntensivosAsunto(s)
Neoplasias Pulmonares , Respiración Artificial , Humanos , Respiración , Ventilación , Neoplasias Pulmonares/terapia , ColesterolRESUMEN
Background: Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. We hypothesized that IFIH1 rs199076 variants would modulate host response and outcome after severe COVID-19. Methods: Patients admitted to an intensive care unit (ICU) with confirmed COVID-19 were prospectively studied and rs1990760 variants determined. Peripheral blood gene expression, cell populations, and immune mediators were measured. Peripheral blood mononuclear cells from healthy volunteers were exposed to an MDA5 agonist and dexamethasone ex-vivo, and changes in gene expression assessed. ICU discharge and hospital death were modeled using rs1990760 variants and dexamethasone as factors in this cohort and in-silico clinical trials. Results: About 227 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a lower expression of inflammation-related pathways, an anti-inflammatory cell profile, and lower concentrations of pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist showed an increase in IL6 expression after dexamethasone treatment. All patients with the TT variant not treated with steroids survived their ICU stay (hazard ratio [HR]: 2.49, 95% confidence interval [CI]: 1.29-4.79). Patients with a TT variant treated with dexamethasone showed an increased hospital mortality (HR: 2.19, 95% CI: 1.01-4.87) and serum IL-6. In-silico clinical trials supported these findings. Conclusions: COVID-19 patients with the IFIH1 rs1990760 TT variant show an attenuated inflammatory response and better outcomes. Dexamethasone may reverse this anti-inflammatory phenotype. Funding: Centro de Investigación Biomédica en Red (CB17/06/00021), Instituto de Salud Carlos III (PI19/00184 and PI20/01360), and Fundació La Marató de TV3 (413/C/2021).
Patients with severe COVID-19 often need mechanical ventilation to help them breathe and other types of intensive care. The outcome for many of these patients depends on how their immune system reacts to the infection. If the inflammatory response triggered by the immune system is too strong, this can cause further harm to the patient. One gene that plays an important role in inflammation is IFIH1 which encodes a protein that helps the body to recognize viruses. There are multiple versions of this gene which each produce a slightly different protein. It is possible that this variation impacts how the immune system responds to the virus that causes COVID-19. To investigate, Amado-Rodríguez, Salgado del Riego et al. analyzed the IFIH1 gene in 227 patients admitted to an intensive care unit in Spain for severe COVID-19 between March and December 2020. They found that patients with a specific version of the gene called TT experienced less inflammation and were more likely to survive the infection. Physicians typically treat patients with moderate to severe COVID-19 with corticosteroid drugs that reduce the inflammatory response. However, Amado-Rodríguez, Salgado del Riego et al. found that patients with the TT version of the IFIH1 gene were at greater risk of dying if they received corticosteroids. The team then applied the distribution of IFIH1 variants among different ethnic ancestries to data from a previous clinical trial, and simulated the effects of corticosteroid treatment. This 'mock' clinical trial supported their findings from the patient-derived data, which were also validated by laboratory experiments on immune cells from individuals with the TT gene. The work by Amado-Rodríguez, Salgado del Riego et al. suggests that while corticosteroids benefit some patients, they may cause harm to others. However, a real-world clinical trial is needed to determine whether patients with the TT version of the IFIH1 gene would do better without steroids.
Asunto(s)
COVID-19/genética , Inflamación/genética , Helicasa Inducida por Interferón IFIH1/genética , SARS-CoV-2/patogenicidad , Anciano , COVID-19/complicaciones , Enfermedad Crítica , ARN Helicasas DEAD-box/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana EdadRESUMEN
A previously healthy 12-year-old boy had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related multisystem inflammatory syndrome (MIS-C) that was rapidly fatal. Autopsy revealed the presence of a large intracardiac thrombus. SARS-CoV-2 spike protein was detected in intestinal cells, supporting the hypothesis that viral presence in the gut may be related to the immunologic response of MIS-C.
Asunto(s)
COVID-19 , Intestinos , Glicoproteína de la Espiga del Coronavirus , COVID-19/complicaciones , COVID-19/patología , Niño , Resultado Fatal , Humanos , Intestinos/virología , Masculino , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria SistémicaRESUMEN
BACKGROUND: Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumours have not been explored. METHODS: To characterise the influence of mechanical ventilation on the behaviour of lung tumours, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechanodependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of nonventilated patients. RESULTS: Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in pro-protein convertase subtilisin/kexin type 9 (PCSK9) and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harbouring melanoma implants increased brain and kidney metastases 2â weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo. In patients, mechanical ventilation increased PCSK9 abundance in lung tumours and the incidence of metastasis, thus decreasing survival. CONCLUSIONS: Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.
Asunto(s)
Adenocarcinoma , Colesterol , Neoplasias Pulmonares , Melanoma , Proproteína Convertasa 9 , Respiración Artificial , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Colesterol/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Respiración Artificial/efectos adversosRESUMEN
BACKGROUND: Cardiogenic pulmonary oedema (CPE) may contribute to ventilator-associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra-low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno-arterial extracorporeal membrane oxygenation (V-A ECMO) on lung inflammation compared to conventional ventilation. METHODS: A single-centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a tertiary university hospital. Seventeen adults requiring V-A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinflammatory mediators in bronchoalveolar lavage fluid (BALF) between both ventilatory strategies. RESULTS: Ventilation with 3 ml/kg PBW yielded lower driving pressures and end-expiratory lung volumes. Overall, there were no differences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL-6 showed statistically significant lower levels of IL-6 and IL-8 during ultra-low tidal volume ventilation. This reduction was significantly proportional to the decrease in driving pressure. In contrast, those with lower IL-6 baseline levels showed a significant increase in these biomarkers. CONCLUSIONS: Ultra-low tidal volume ventilation in patients with CPE and V-A ECMO may attenuate inflammation in selected cases. VALI may be driven by an interaction between the individual proinflammatory profile and the mechanical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifier NCT03041428, Registration date: 2nd February 2017).
RESUMEN
The chemokine receptor CCR5 has been implicated in COVID-19. CCR5 and its ligands are overexpressed in patients. The pharmacological targeting of CCR5 would improve the COVID-19 severity. We sought to investigate the role of the CCR5-Δ32 variant (rs333) in COVID-19. The CCR5-Δ32 was genotyped in 801 patients (353 in the intensive care unit, ICU) and 660 healthy controls, and the deletion was significantly less frequent in hospitalysed COVID-19 than in healthy controls (p = 0.01, OR = 0.66, 95%CI = 0.49-0.88). Of note, we did not find homozygotes among the patients, compared to 1% of the controls. The CCR5 transcript was measured in leukocytes from 85 patients and 40 controls. We found a significantly higher expression of the CCR5 transcript among the patients, with significant difference when comparing the non-deletion carriers (controls = 35; patients = 81; p = 0.01). ICU-patients showed non-significantly higher expression than no-ICU cases. Our study points to CCR5 as a genetic marker for COVID-19. The pharmacological targeting of CCR5 should be a promising treatment for COVID-19.
Asunto(s)
COVID-19/genética , Variación Genética , Receptores CCR5/genética , SARS-CoV-2/patogenicidad , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/virología , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Admisión del Paciente , Fenotipo , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la EnfermedadRESUMEN
The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.
Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ácidos/administración & dosificación , Ácidos/toxicidad , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Animales , Apoptosis , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Transducción de Señal , Estrés Mecánico , Investigación Biomédica Traslacional , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
BACKGROUND AND AIMS: The interferon-induced transmembrane proteins play an important antiviral role by preventing viruses from traversing the cellular lipid bilayer. IFITM3 gene variants have been associated with the clinical response to influenza and other viruses. Our aim was to determine whether the IFITM3 rs12252 polymorphism was associated with the risk of developing severe symptoms of COVID-19 in our population. METHODS: A total of 288 COVID-19 patients who required hospitalization (81 in the intensive care unit) and 440 age matched controls were genotyped with a Taqman assay. Linear regression models were used to compare allele and genotype frequencies between the groups, correcting for age and sex. RESULTS: Carriers of the minor allele frequency (rs12252 C) were significantly more frequent in the patients compared to controls after correcting by age and sex (p = 0.01, OR = 2.02, 95%CI = 1.19-3.42). This genotype was non-significantly more common among patients who required ICU. CONCLUSIONS: The IFITM3 rs12252 C allele was a risk factor for COVID-19 hospitalization in our Caucasian population. The extent of the association was lower than the reported among Chinese, a population with a much higher frequency of the risk allele.
Asunto(s)
Pueblo Asiatico/genética , COVID-19/genética , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Población Blanca/genética , Anciano , COVID-19/sangre , COVID-19/epidemiología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Modelos Lineales , Masculino , Proteínas de la Membrana/sangre , Persona de Mediana Edad , Polimorfismo Genético , Proteínas de Unión al ARN/sangre , Factores de RiesgoRESUMEN
The Angiotensin system is implicated in the pathogenesis of COVID-19. First, ACE2 is the cellular receptor for SARS-CoV-2, and expression of the ACE2 gene could regulate the individuals susceptibility to infection. In addition, the balance between ACE1 and ACE2 activity has been implicated in the pathogenesis of respiratory diseases and could play a role in the severity of COVID-19. Functional ACE1/ACE2 gene polymorphisms have been associated with the risk of cardiovascular and pulmonary diseases, and could thus also contribute to the outcome of COVID-19. We studied 204 COVID-19 patients (137 non-severe and 67 severe-ICU cases) and 536 age-matched controls. The ACE1 insertion/deletion and ACE2 rs2285666 polymorphism were determined. Variables frequencies were compared between the groups by logistic regression. We also sequenced the ACE2 coding nucleotides in a group of patients. Severe COVID-19 was associated with hypertension male gender (p < 0.001), hypertension (p = 0.006), hypercholesterolaemia (p = 0.046), and the ACE1-DD genotype (p = 0.049). In the multiple logistic regression hypertension (p = 0.02, OR = 2.26, 95%CI = 1.12-4.63) and male gender (p = 0.002; OR = 3.15, 95%CI = 1.56-6.66) remained as independent significant predictors of severity. The ACE2 polymorphism was not associated with the disease outcome. The ACE2 sequencing showed no coding sequence variants that could explain an increased risk of developing COVID-19. In conclusion, an adverse outcome of COVID-19 was associated with male gender, hypertension, hypercholesterolemia and the ACE1 genotype. Our work suggested that the ACE1-I/D might influence COVID-19 severity, but the effect was dependent on the hypertensive status. This result requires further validation in other large cohorts.
Asunto(s)
Infecciones por Coronavirus/genética , Peptidil-Dipeptidasa A/genética , Neumonía Viral/genética , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2 , Betacoronavirus , COVID-19 , Estudios de Casos y Controles , Femenino , Técnicas de Genotipaje , Humanos , Hipercolesterolemia/complicaciones , Hipertensión/complicaciones , Mutación INDEL , Masculino , Persona de Mediana Edad , Pandemias , Polimorfismo de Nucleótido Simple , Factores de Riesgo , SARS-CoV-2 , España , Adulto JovenRESUMEN
OBJECTIVES: Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury. DESIGN: Controlled, human in vitro and ex vivo studies, as well as murine in vivo laboratory studies. SETTING: Research laboratory. SUBJECTS: Wild-type, TRPV4-deficient C57BL/6J mice, 8-10 weeks old. Human postmortem lung tissue and human lung epithelial cell line BEAS-2B. INTERVENTION: Mice subjected to mechanical ventilation were studied using functional MRI to assess hippocampal activity. The effects of lidocaine (a nonselective ion-channel inhibitor), P2X-purinoceptor antagonist (iso-PPADS), or genetic TRPV4 deficiency on hippocampal dopamine-dependent pro-apoptotic signaling were studied in mechanically ventilated mice. Human lung epithelial cells (BEAS-2B) were used to study the effects of mechanical stretch on TRPV4 and P2X expression and activation. TRPV4 levels were measured in postmortem lung tissue from ventilated and nonventilated patients. MEASUREMENTS AND MAIN RESULTS: Hippocampus functional MRI analysis revealed considerable changes in response to the increase in tidal volume during mechanical ventilation. Intratracheal lidocaine, iso-PPADS, and TRPV4 genetic deficiency protected mice against ventilationinduced hippocampal pro-apoptotic signaling. Mechanical stretch in both, BEAS-2B cells and ventilated wild-type mice, resulted in TRPV4 activation and reduced Trpv4 and P2x expression. Intratracheal replenishment of adenosine triphosphate in Trpv4 mice abrogated the protective effect of TRPV4 deficiency. Autopsy lung tissue from ventilated patients showed decreased lung TRPV4 levels compared with nonventilated CONCLUSIONS:: TRPV4 mechanosensors and purinergic receptors are involved in the mechanisms of ventilator-induced brain injury. Inhibition of this neural signaling, either using nonspecific or specific inhibitors targeting the TRPV4/adenosine triphosphate/P2X signaling axis, may represent a novel strategy to prevent or treat ventilator-induced brain injury.
Asunto(s)
Lesiones Encefálicas/etiología , Pulmón/metabolismo , Receptores Purinérgicos P2X/metabolismo , Respiración Artificial/efectos adversos , Anestésicos Locales/farmacología , Animales , Lesiones Encefálicas/prevención & control , Línea Celular , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Humanos , Lidocaína/farmacología , Pulmón/patología , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2X/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Volumen de Ventilación PulmonarRESUMEN
The nuclear membrane acts as a mechanosensor that drives cellular responses following changes in the extracellular environment. Mechanically ventilated lungs are exposed to an abnormally high mechanical load that may result in clinically relevant alveolar damage. We report that mechanical ventilation in mice increased the expression of Lamin-A, a major determinant of nuclear membrane stiffness, in alveolar epithelial cells. Lamin-A expression increased and nuclear membrane compliance decreased in human bronchial epithelial cells after a mechanical stretch stimulus and in a murine model of lung injury after positive-pressure ventilation. Reducing Lamin-A maturation by depletion of the protease-encoding gene Zmpste24 preserved alveolar nuclear membrane compliance after mechanical ventilation in mice. Ventilator-induced proapoptotic gene expression changes and lung injury were reduced in mice lacking Zmpste24 compared to wild-type control animals. Similarly, treatment with the human immunodeficiency virus protease inhibitors lopinavir and ritonavir reduced the accumulation of Lamin-A at nuclear membranes and preserved nuclear membrane compliance after mechanical ventilation, mimicking the protective phenotype of Zmpste24-/- animals. These results show that the pathophysiological response to lung mechanical stretch is sensed by the nuclear membranes of lung alveolar cells, and suggest that protease inhibitors might be effective in preventing ventilator-induced lung injury.
Asunto(s)
Células Epiteliales Alveolares/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Mecanotransducción Celular , Membrana Nuclear/metabolismo , Respiración Artificial/efectos adversos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/ultraestructura , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Laminas/metabolismo , Lopinavir/farmacología , Pulmón/metabolismo , Pulmón/patología , Pulmón/ultraestructura , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/metabolismo , Ratones Endogámicos C57BL , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/ultraestructura , Ritonavir/farmacologíaRESUMEN
Neutrophils are key players in acute lung injury. Once recruited from the circulation, these cells release cytotoxic molecules that lead to tissue disruption, so their blockade has been advocated to prevent lung damage. However, lung injury also occurs during neutropenia and usually involves a very poor outcome. There is emerging evidence that neutrophils not only contribute to that early damage but also orchestrate later repair. Neutrophils promote epithelial proliferation and are a source of proteases, which are required for the processing of the collagen scar and facilitation of cell migration. This article reviews the effects of neutrophils in repair after acute lung injury, focusing on their role as biovectors for proteases and other molecules involved in tissue remodeling.
Asunto(s)
Lesión Pulmonar/terapia , Pulmón/patología , Metaloproteinasas de la Matriz/metabolismo , Enfermedad Aguda , Animales , Humanos , Modelos AnimalesRESUMEN
Cell migration is a core process to preserve homeostasis. Release of chemotactic signals induces changes in cell cytoskeleton to facilitate migration. This includes the rearrangement of cytoskeleton, genomic reprogramming and the modification of the surrounding extracellular matrix (ECM) to allow the motion of cells through. In the special case of repair after acute lung injury, cells must migrate while exposed to an increased mechanical stretch caused either by an increased work of breathing or positive-pressure ventilation. Interestingly, the cell response to this increased mechanical load can modify virtually all the mechanisms involved in cell migration. In this review we explore the interplay between stretch and the machinery responsible for cell migration. A translational approach to find new therapies in acute lung injury must take into account these interactions in order to develop effective treatments that promote lung repair.
RESUMEN
BACKGROUND: Neutrophils may cause tissue disruption during migration and by releasing cytotoxic molecules. However, the benefits of neutrophil depletion observed in experimental models of lung injury do not correspond with the poor outcome of neutropenic patients. METHODS: To clarify the role of neutrophils during repair, mice with ventilator induced lung injury (VILI) were rendered neutropenic after damage, and followed for 48 hours of spontaneous breathing. Lungs were harvested and inflammatory mediators and matrix metalloproteinases measured. Bronchoalveolar lavage fluid (BALF) from ventilated patients with acute respiratory distress syndrome, with or without neutropenia, was collected, the same mediators measured and their effects in an ex vivo model of alveolar repair studied. Finally, neutropenic mice were treated after VILI with exogenous matrix metalloproteinase-9 (MMP-9). RESULTS: Lungs from neutropenic animals showed delayed repair and displayed higher levels of tumour necrosis factor α, interferon γ and macrophage inflammatory protein 2, and absence of MMP-9. BALF from ventilated neutropenic patients with acute respiratory distress syndrome showed similar results. BALFs from neutropenic patients yielded a delayed closure rate of epithelial wounds ex vivo, which was improved by removal of collagen or addition of exogenous MMP-9. Lastly, treatment of neutropenic mice with exogenous MMP-9 after VILI reduced tissue damage without modifying cytokine concentrations. CONCLUSION: Release of MMP-9 from neutrophils is required for adequate matrix processing and lung repair.