Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1202126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485316

RESUMEN

The outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is regarded as the most severe of the documented coronavirus pandemics. The measurement and monitoring of SARS-CoV-2 antibody levels by serological tests are relevant for a better epidemiological and clinical understanding of COVID-19. The aim of this work was to design a method called the SARS-CoV-2 antibody detection method (SARS-CoV-2 AbDM) for fluorescence immunodetection of anti-SARS-CoV-2 IgG and IgM on both plate and microfluidic chip. For this purpose, a system with magnetic beads that immobilize the antigen (S protein and RBD) on its surface was used to determine the presence and quantity of antibodies in a sample in a single reaction. The SARS-CoV-2 AbDM led to several advantages in the performance of the tests, such as reduced cost, possibility of performing isolated or multiple samples, potential of multiplex detection, and capacity to detect whole blood samples without losing resolution. In addition, due to the microfluidic chip in conjunction with the motorized actuated platform, the time, sample quantity, and operator intervention during the process were reduced. All these advantages suggest that the SARS-CoV-2 AbDM has the potential to be developed as a PoC that can be used as a tool for seroprevalence monitoring, allowing a better understanding of the epidemiological and clinical characteristics of COVID-19 and contributing to more effective and ethical decision-making in strategies to fight against the COVID-19 pandemic.

2.
Biosensors (Basel) ; 11(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203685

RESUMEN

In spite of a current increasing trend in the development of miniaturized, standalone point-of-care (PoC) biosensing platforms in the literature, the actual implementation of such systems in the field is far from being a reality although deeply needed. In the particular case of the population screenings for local or regional diseases related to specific pathogens, the diagnosis of the presence of specific antibodies could drastically modify therapies and even the organization of public policies. The aim of this work was to develop a fast, cost-effective detection method based on the manipulation of functionalized magnetic beads for an efficient diagnosis of hypersensitivity pneumonitis (HP), looking for the presence of anti-pigeon antigen antibodies (APAA) in a patient's serum. We presented a Diagnostic Biosensor Method (DBM) in detail, with validation by comparison with a traditional high-throughput platform (ELISA assay). We also demonstrated that it was compatible with a microfluidic chip that could be eventually incorporated into a PoC for easy and broad deployment using portable optical detectors. After standardization of the different reaction steps, we constructed and validated a plastic chip that could easily be scaled to high-volume manufacturing in the future. The solution proved comparable to conventional ELISA assays traditionally performed by the clinicians in their laboratory and should be compatible with other antibody detection directly from patient samples.


Asunto(s)
Alveolitis Alérgica Extrínseca , Técnicas Biosensibles , Alveolitis Alérgica Extrínseca/diagnóstico , Anticuerpos , Ensayo de Inmunoadsorción Enzimática , Diseño de Equipo , Humanos , Separación Inmunomagnética , Dispositivos Laboratorio en un Chip , Microfluídica , Sistemas de Atención de Punto
3.
Micromachines (Basel) ; 9(4)2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30424120

RESUMEN

The development of organ-on-chip and biological scaffolds is currently requiring simpler methods for microstructure biocompatible materials in three dimensions, to fabricate structural and functional elements in biomaterials, or modify the physicochemical properties of desired substrates. Aiming at addressing this need, a low-power CD-DVD-Blu-ray laser pickup head was mounted on a programmable three-axis micro-displacement system in order to modify the surface of polymeric materials in a local fashion. Thanks to a specially-designed method using a strongly absorbing additive coating the materials of interest, it has been possible to establish and precisely control processes useful in microtechnology for biomedical applications. The system was upgraded with Blu-ray laser for additive manufacturing and ablation on a single platform. In this work, we present the application of these fabrication techniques to the development of biomimetic cellular culture platforms thanks to the simple integration of several features typically achieved with traditional, less cost-effective microtechnology methods in one step or through replica-molding. Our straightforward approach indeed enables great control of local laser microablation or polymerization for true on-demand biomimetic micropatterned designs in transparent polymers and hydrogels and is allowing integration of microfluidics, microelectronics, surface microstructuring, and transfer of superficial protein micropatterns on a variety of biocompatible materials.

4.
Biomed Microdevices ; 19(1): 5, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28074385

RESUMEN

In this work, we report a simple fabrication method for microelectrodes on a polymethylmethacrylate substrate, using a low-cost laser platform based on a CD-DVD unit for direct rapid-prototyping. We used this laser microfabrication technique to etch any desired design on polymethylmethacrylate substrates to produce microchannels with controlled geometry, with a highly repeatable micron-scale resolution. Those shallow microchannels were then filled with a conductive paste of material of our choice that was converted into microelectrodes of desired shapes and geometries after drying. To validate our process, different geometries, sizes and materials were used as electrodes, and then tested for amperometry and impedance measurements. Development of these microelectrodes is motivated by their potential application in sensors and biosensors, such as glucose and cell counting, as demonstrated in this paper.


Asunto(s)
Técnicas Biosensibles/instrumentación , Discos Compactos , Rayos Láser , Microelectrodos , Polimetil Metacrilato/química , Técnicas Biosensibles/economía , Recuento de Células , Línea Celular , Costos y Análisis de Costo , Impedancia Eléctrica , Diseño de Equipo , Glucosa/análisis , Microelectrodos/economía , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...