Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nat Genet ; 56(10): 2112-2120, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39266764

RESUMEN

Only a subset of patients treated with immune checkpoint inhibitors (CPIs) respond to the treatment, and distinguishing responders from non-responders is a major challenge. Many proposed biomarkers of CPI response and survival probably represent alternative measurements of the same aspects of the tumor, its microenvironment or the host. Thus, we currently ignore how many truly independent biomarkers there are. With an unbiased analysis of genomics, transcriptomics and clinical data of a cohort of patients with metastatic tumors (n = 479), we discovered five orthogonal latent factors: tumor mutation burden, T cell effective infiltration, transforming growth factor-beta activity in the microenvironment, prior treatment and tumor proliferative potential. Their association with CPI response and survival was observed across all tumor types and validated across six independent cohorts (n = 1,491). These five latent factors constitute a frame of reference to organize current and future knowledge on biomarkers of CPI response and survival.


Asunto(s)
Biomarcadores de Tumor , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/genética , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Mutación , Factor de Crecimiento Transformador beta/metabolismo , Resultado del Tratamiento , Estudios de Cohortes
2.
Nature ; 633(8028): 127-136, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112709

RESUMEN

Colorectal carcinoma (CRC) is a common cause of mortality1, but a comprehensive description of its genomic landscape is lacking2-9. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome. We extend the molecular pathways involved in CRC development, define four new common subgroups of microsatellite-stable CRC based on genomic features and show that these groups have independent prognostic associations. We also characterize several rare molecular CRC subgroups, some with potential clinical relevance, including cancers with both microsatellite and chromosomal instability. We demonstrate a spectrum of mutational profiles across the colorectum, which reflect aetiological differences. These include the role of Escherichia colipks+ colibactin in rectal cancers10 and the importance of the SBS93 signature11-13, which suggests that diet or smoking is a risk factor. Immune-escape driver mutations14 are near-ubiquitous in hypermutant tumours and occur in about half of microsatellite-stable CRCs, often in the form of HLA copy number changes. Many driver mutations are actionable, including those associated with rare subgroups (for example, BRCA1 and IDH1), highlighting the role of whole-genome sequencing in optimizing patient care.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , Genoma Humano , Genómica , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/clasificación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Dieta/efectos adversos , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Genoma Humano/genética , Antígenos HLA/genética , Inestabilidad de Microsatélites , Pronóstico , Fumar/efectos adversos , Reino Unido/epidemiología , Secuenciación Completa del Genoma
3.
Emerg Microbes Infect ; 13(1): 2387906, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39087555

RESUMEN

Despite the high efficiency of current SARS-CoV-2 mRNA vaccines in reducing COVID-19 morbidity and mortality, waning immunity and the emergence of resistant variants underscore the need for novel vaccination strategies. This study explores a heterologous mRNA/Modified Vaccinia virus Ankara (MVA) prime/boost regimen employing a trimeric form of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein compared to a homologous MVA/MVA regimen. In C57BL/6 mice, the RBD was delivered during priming via an mRNA vector encapsulated in nanoemulsions (NE) or lipid nanoparticles (LNP), followed by a booster with a replication-deficient MVA-based recombinant virus (MVA-RBD). This heterologous mRNA/MVA regimen elicited strong anti-RBD binding and neutralizing antibodies (BAbs and NAbs) against both the ancestral SARS-CoV-2 strain and different variants of concern (VoCs). Additionally, this protocol induced robust and polyfunctional RBD-specific CD4 and CD8 T cell responses, particularly in animals primed with mLNP-RBD. In K18-hACE2 transgenic mice, the LNP-RBD/MVA combination provided complete protection from morbidity and mortality following a live SARS-CoV-2 challenge compared with the partial protection observed with mNE-RBD/MVA or MVA/MVA regimens. Although the mNE-RBD/MVA regimen only protects half of the animals, it was able to induce antibodies with Fc-mediated effector functions besides NAbs. Moreover, viral replication and viral load in the respiratory tract were markedly reduced and decreased pro-inflammatory cytokine levels were observed. These results support the efficacy of heterologous mRNA/MVA vaccine combinations over homologous MVA/MVA regimen, using alternative nanocarriers that circumvent intellectual property restrictions of current mRNA vaccine formulations.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos C57BL , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virus Vaccinia , Animales , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Humanos , Femenino , Nanopartículas/administración & dosificación , Vacunación , Vacunas de ARNm/administración & dosificación , Ratones Transgénicos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Linfocitos T CD8-positivos/inmunología , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Liposomas
4.
Cell Genom ; 4(8): 100604, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38959898

RESUMEN

Insulinomas are rare neuroendocrine tumors arising from pancreatic ß cells, characterized by aberrant proliferation and altered insulin secretion, leading to glucose homeostasis failure. With the aim of uncovering the role of noncoding regulatory regions and their aberrations in the development of these tumors, we coupled epigenetic and transcriptome profiling with whole-genome sequencing. As a result, we unraveled somatic mutations associated with changes in regulatory functions. Critically, these regions impact insulin secretion, tumor development, and epigenetic modifying genes, including polycomb complex components. Chromatin remodeling is apparent in insulinoma-selective domains shared across patients, containing a specific set of regulatory sequences dominated by the SOX17 binding motif. Moreover, many of these regions are H3K27me3 repressed in ß cells, suggesting that tumoral transition involves derepression of polycomb-targeted domains. Our work provides a compendium of aberrant cis-regulatory elements affecting the function and fate of ß cells in their progression to insulinomas and a framework to identify coding and noncoding driver mutations.


Asunto(s)
Insulinoma , Humanos , Insulinoma/genética , Insulinoma/patología , Insulinoma/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Regulación Neoplásica de la Expresión Génica , Epigénesis Genética , Ensamble y Desensamble de Cromatina/genética
5.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN , ADN , Mutagénesis , Mutación , Animales , Humanos , Ratones , Alquilación/efectos de la radiación , Línea Celular , ADN/química , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , Aductos de ADN/química , Aductos de ADN/genética , Aductos de ADN/metabolismo , Aductos de ADN/efectos de la radiación , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis/genética , Mutagénesis/efectos de la radiación , Mutación/genética , Mutación/efectos de la radiación , Neoplasias/genética , Transcripción Genética , Rayos Ultravioleta/efectos adversos
6.
Cancer Discov ; 14(9): 1717-1731, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38722595

RESUMEN

Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.


Asunto(s)
Hematopoyesis Clonal , Aprendizaje Automático , Mutagénesis , Mutación , Humanos , Hematopoyesis Clonal/genética , Simulación por Computador , Neoplasias Hematológicas/genética
9.
Cell Rep ; 43(4): 114048, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38614086

RESUMEN

Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/patología , Humanos , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Empalme Alternativo/genética , Femenino , Eliminación de Gen
10.
NPJ Vaccines ; 9(1): 53, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448450

RESUMEN

Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.

11.
Cancer Discov ; 14(6): 953-964, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501975

RESUMEN

Pediatric cancers are rare diseases, and children without known germline predisposing conditions who develop a second malignancy during developmental ages are extremely rare. We present four such clinical cases and, through whole-genome and error-correcting ultra-deep duplex sequencing of tumor and normal samples, we explored the origin of the second malignancy in four children, uncovering different routes of development. The exposure to cytotoxic therapies was linked to the emergence of a secondary acute myeloid leukemia. A common somatic mutation acquired early during embryonic development was the driver of two solid malignancies in another child. In two cases, the two tumors developed from completely independent clones diverging during embryogenesis. Importantly, we demonstrate that platinum-based therapies contributed at least one order of magnitude more mutations per day of exposure than aging to normal tissues in these children. SIGNIFICANCE: Using whole-genome and error-correcting ultra-deep duplex sequencing, we uncover different origins for second neoplasms in four children. We also uncover the presence of platinum-related mutations across 10 normal tissues of exposed individuals, highlighting the impact that the use of cytotoxic therapies may have on cancer survivors. See related commentary by Pacyna and Nangalia, p. 900. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Mutación , Neoplasias Primarias Secundarias , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Antineoplásicos/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasias Primarias Secundarias/genética , Secuenciación Completa del Genoma
12.
Mol Syst Biol ; 20(1): 6-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177930

RESUMEN

The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.


Asunto(s)
Tasa de Mutación , Neoplasias , Humanos , Mutación , Neoplasias/genética , Secuencia de Bases , Nucleótidos
13.
Cancer Discov ; 14(1): 36-48, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38047596

RESUMEN

Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chromatin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces interact and influence each other while shaping tumor progression. A comprehensive characterization of the cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery. SIGNIFICANCE: Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, experimental and theoretical approaches must account for multiple evolutionary mechanisms and their interactions to ultimately understand, predict, and steer tumor evolution.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Epigenómica , Medicina de Precisión , Microambiente Tumoral/genética
14.
Nat Commun ; 14(1): 4239, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454136

RESUMEN

A variety of mutational processes drive cancer development, but their dynamics across the entire disease spectrum from pre-cancerous to advanced neoplasia are poorly understood. We explore the mutagenic processes shaping oesophageal adenocarcinoma tumorigenesis in 997 instances comprising distinct stages of this malignancy, from Barrett Oesophagus to primary tumours and advanced metastatic disease. The mutational landscape is dominated by the C[T > C/G]T substitution enriched signatures SBS17a/b, which are linked with TP53 mutations, increased proliferation, genomic instability and disease progression. The APOBEC mutagenesis signature is a weak but persistent signal amplified in primary tumours. We also identify prevalent alterations in DNA damage repair pathways, with homologous recombination, base and nucleotide excision repair and translesion synthesis mutated in up to 50% of the cohort, and surprisingly uncoupled from transcriptional activity. Among these, the presence of base excision repair deficiencies show remarkably poor prognosis in the cohort. In this work, we provide insights on the mutational aetiology and changes enabling the transition from pre-neoplastic to advanced oesophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Mutación , Mutagénesis , Neoplasias Esofágicas/genética , Adenocarcinoma/genética
15.
PLoS Genet ; 19(2): e1010634, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780550

RESUMEN

Recently, distinct mutational footprints observed in metastatic tumors, secondary malignancies and normal human tissues have been demonstrated to be caused by the exposure to several chemotherapeutic drugs. These characteristic mutations originate from specific lesions caused by these chemicals to the DNA of exposed cells. However, it is unknown whether the exposure to these chemotherapies leads to a specific footprint of larger chromosomal aberrations. Here, we address this question exploiting whole genome sequencing data of metastatic tumors obtained from patients exposed to different chemotherapeutic drugs. As a result, we discovered a specific copy number footprint across tumors from patients previously exposed to platinum-based therapies. This footprint is characterized by a significant increase in the number of chromosomal fragments of copy number 1-4 and size smaller than 10 Mb in exposed tumors with respect to their unexposed counterparts (median 14-387% greater across tumor types). The number of chromosomal fragments characteristic of the platinum-associated CN footprint increases significantly with the activity of the well known platinum-related footprint of single nucleotide variants across exposed tumors.


Asunto(s)
Antineoplásicos , Variaciones en el Número de Copia de ADN , Neoplasias , Platino (Metal) , Humanos , Aberraciones Cromosómicas , Mutación , Neoplasias/genética , Antineoplásicos/farmacología , Platino (Metal)/farmacología
17.
Haematologica ; 108(4): 969-980, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36325893

RESUMEN

Genetic information has been crucial to understand the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) at diagnosis and at relapse, but still nowadays has a limited value in a clinical context. Few genetic markers are associated with the outcome of T-ALL patients, independently of measurable residual disease (MRD) status after therapy. In addition, the prognostic relevance of genetic features may be modulated by the specific treatment used. We analyzed the genetic profile of 145 T-ALL patients by targeted deep sequencing. Genomic information was integrated with the clinicalbiological and survival data of a subset of 116 adult patients enrolled in two consecutive MRD-oriented trials of the Spanish PETHEMA (Programa Español de Tratamientos en Hematología) group. Genetic analysis revealed a mutational profile defined by DNMT3A/ N/KRAS/ MSH2/ U2AF1 gene mutations that identified refractory/resistant patients. Mutations in the DMNT3A gene were also found in the non-leukemic cell fraction of patients with T-ALL, revealing a possible mutational-driven clonal hematopoiesis event to prime T-ALL in elderly. The prognostic impact of this adverse genetic profile was independent of MRD status on day +35 of induction therapy. The combined worse-outcome genetic signature and MRD on day +35 allowed risk stratification of T-ALL into standard or high-risk groups with significantly different 5- year overall survival (OS) of 52% (95% confidence interval: 37-67) and 17% (95% confidence interval: 1-33), respectively. These results confirm the relevance of the tumor genetic profile in predicting patient outcome in adult T-ALL and highlight the need for novel gene-targeted chemotherapeutic schedules to improve the OS of poor-prognosis T-ALL patients.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Adulto , Anciano , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Supervivencia sin Enfermedad , Pronóstico , Neoplasia Residual/genética , Genómica , Linfocitos T/patología
18.
medRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168256

RESUMEN

Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of a number of hematologic malignancies, cardiovascular diseases and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. Here, we train high-quality machine-learning models for 12 of the most recurrent CH driver genes to identify their driver mutations. These models outperform an experimental base-editing approach and expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals.

19.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38250827

RESUMEN

The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...