Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1197814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564130

RESUMEN

The capacity of cells to adhere to, exert forces upon and migrate through their surrounding environment governs tissue regeneration and cancer metastasis. The role of the physical contractile forces that cells exert in this process, and the underlying molecular mechanisms are not fully understood. We, therefore, aimed to clarify if the extracellular forces that cells exert on their environment and/or the intracellular forces that deform the cell nucleus, and the link between these forces, are defective in transformed and invasive fibroblasts, and to indicate the underlying molecular mechanism of control. Confocal, Epifluorescence and Traction force microscopy, followed by computational analysis, showed an increased maximum contractile force that cells apply on their environment and a decreased intracellular force on the cell nucleus in the invasive fibroblasts, as compared to normal control cells. Loss of HDAC6 activity by tubacin-treatment and siRNA-mediated HDAC6 knockdown also reversed the reduced size and more circular shape and defective migration of the transformed and invasive cells to normal. However, only tubacin-mediated, and not siRNA knockdown reversed the increased force of the invasive cells on their surrounding environment to normal, with no effects on nuclear forces. We observed that the forces on the environment and the nucleus were weakly positively correlated, with the exception of HDAC6 siRNA-treated cells, in which the correlation was weakly negative. The transformed and invasive fibroblasts showed an increased number and smaller cell-matrix adhesions than control, and neither tubacin-treatment, nor HDAC6 knockdown reversed this phenotype to normal, but instead increased it further. This highlights the possibility that the control of contractile force requires separate functions of HDAC6, than the control of cell adhesions, spreading and shape. These data are consistent with the possibility that defective force-transduction from the extracellular environment to the nucleus contributes to metastasis, via a mechanism that depends upon HDAC6. To our knowledge, our findings present the first correlation between the cellular forces that deforms the surrounding environment and the nucleus in fibroblasts, and it expands our understanding of how cells generate contractile forces that contribute to cell invasion and metastasis.

2.
Front Cell Dev Biol ; 10: 926283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483676

RESUMEN

Metastasizing cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumors in the clinic. However, the role of vimentin in cell motility, and if the assembly of non-filamentous variants of vimentin into filaments regulates cell migration remains unclear. We observed that the vimentin-targeting drug ALD-R491 increased the stability of vimentin filaments, by reducing filament assembly and/or disassembly. ALD-R491-treatment also resulted in more bundled and disorganized filaments and an increased pool of non-filamentous vimentin. This was accompanied by a reduction in size of cell-matrix adhesions and increased cellular contractile forces. Moreover, during cell migration, cells showed erratic formation of lamellipodia at the cell periphery, loss of coordinated cell movement, reduced cell migration speed, directionality and an elongated cell shape with long thin extensions at the rear that often detached. Taken together, these results indicate that the stability of vimentin filaments and the soluble pool of vimentin regulate the speed and directionality of cell migration and the capacity of cells to migrate in a mechanically cohesive manner. These observations suggest that the stability of vimentin filaments governs the adhesive, physical and migratory properties of cells, and expands our understanding of vimentin functions in health and disease, including cancer metastasis.

3.
Sci Rep ; 12(1): 19835, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400790

RESUMEN

Infantile fibrosarcoma is a rare childhood tumour that originates in the fibrous connective tissue of the long bones for which there is an urgent need to identify novel therapeutic targets. This study aims to clarify the role of the extracellular matrix component hyaluronan in the invasion of child fibroblasts and Infantile fibrosarcoma into the surrounding environment. Using nanoscale super-resolution STED (Stimulated emission depletion) microscopy followed by computational image analysis, we observed, for the first time, that invasive child fibroblasts showed increased nanoscale clustering of hyaluronan at the cell periphery, as compared to control cells. Hyaluronan was not observed within focal adhesions. Bioinformatic analyses further revealed that the increased nanoscale hyaluronan clustering was accompanied by increased gene expression of Hyaluronan synthase 2, reduced expression of Hyaluronidase 2 and CD44, and no change of Hyaluronan synthase 1 and Hyaluronidases 1, 3, 4 or 5. We further observed that the expression of the Hyaluronan synthase 1, 2 and 3, and the Hyaluronidase 3 and 5 genes was linked to reduced life expectancy of fibrosarcoma patients. The invasive front of infantile fibrosarcoma tumours further showed increased levels of hyaluronan, as compared to the tumour centre. Taken together, our findings are consistent with the possibility that while Hyaluronan synthase 2 increases the levels, the Hyaluronidases 3 and 5 reduce the weight of hyaluronan, resulting in the nanoscale clustering of hyaluronan at the leading edge of cells, cell invasion and the spread of Infantile fibrosarcoma.


Asunto(s)
Fibrosarcoma , Ácido Hialurónico , Humanos , Niño , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo , Fibrosarcoma/patología , Fibroblastos/metabolismo , Análisis por Conglomerados
4.
J Biotechnol ; 234: 58-65, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27485813

RESUMEN

Abnormal levels of fibrinogen (Fib) in blood plasma are associated with several pathological conditions and hence methods for its detection in blood and body fluids are essential. Nanobodies (Nbs) or (VHHs) are single domain antibodies derived from camelids with excellent biophysical and antigen-binding properties, showing great promise in diagnostics and therapy. In this work, we select and characterize high affinity Nbs binding human Fib employing an E. coli cell surface display system based on the fusion of an immune library of VHH domains with the ß-domain of Intimin. Bacteria displaying high-affinity Nbs against Fib were selected using magnetic cell sorting (MACS). Specific binding of the selected clones to Fib was confirmed by flow cytometry of E. coli bacteria, as well as by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) with the purified Nbs. E. coli display also provided an excellent estimation of the affinity of the selected Nbs by flow cytometry analysis under equilibrium conditions, with equilibrium constant (KD) values very similar to those obtained by SPR analysis. Finally, pairwise epitope-scouting studies revealed that the selected Nbs bound distinct epitopes on Fib. The selected Nbs are promising diagnostic tools for determination of human Fib levels.


Asunto(s)
Escherichia coli/genética , Fibrinógeno/inmunología , Anticuerpos de Dominio Único/inmunología , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Técnicas de Visualización de Superficie Celular , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Fibrinógeno/análisis , Citometría de Flujo , Humanos , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/aislamiento & purificación , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA