Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Peptides ; 34(2): 360-72, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22386651

RESUMEN

Breathing and the activity of its generator (the pre-Bötzinger complex; pre-BötC) are highly regulated functions. Among neuromodulators of breathing, somatostatin (SST) is unique: it is synthesized by a subset of glutamatergic pre-BötC neurons, but acts as an inhibitory neuromodulator. Moreover, SST regulates breathing both in normoxic and in hypoxic conditions. Although it has been implicated in the neuromodulation of breathing, neither the locus of SST modulation, nor the receptor subtypes involved have been identified. In this study, we aimed to fill in these blanks by characterizing the SST-induced regulation of inspiratory rhythm generation in vitro and in vivo. We found that both endogenous and exogenous SST depress all preBötC-generated rhythms. While SST abolishes sighs, it also decreases the frequency and increases the regularity of eupnea and gasping. Pharmacological experiments showed that SST modulates inspiratory rhythm generation by activating SST receptor type-2, whose mRNA is abundantly expressed in the pre-Bötzinger complex. In vivo, blockade of SST receptor type-2 reduces gasping amplitude and consequently, it precludes auto-resuscitation after asphyxia. Based on our findings, we suggest that SST functions as an inhibitory neuromodulator released by excitatory respiratory neurons when they become overactivated in order to stabilize breathing rhythmicity in normoxic and hypoxic conditions.


Asunto(s)
Asfixia/fisiopatología , Inhalación/efectos de los fármacos , Neurotransmisores/farmacología , Centro Respiratorio/efectos de los fármacos , Somatostatina/farmacología , Animales , Asfixia/metabolismo , Asfixia/mortalidad , Fenómenos Electrofisiológicos , Hipoxia/metabolismo , Hipoxia/mortalidad , Hipoxia/fisiopatología , Inhalación/fisiología , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/fisiología , Neurotransmisores/fisiología , Periodicidad , Pletismografía , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/genética , Centro Respiratorio/fisiología , Somatostatina/fisiología , Tasa de Supervivencia , Regulación hacia Arriba
2.
Brain Res ; 1311: 64-72, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19945442

RESUMEN

In spite of considerable research attention focused on clarifying the mechanisms by which the mammalian respiratory rhythm is generated, little attention has been given to examining how this neuronal circuit can be protected from heat stress. Hyperthermia has a profound effect on neuronal circuits including the circuit that generates breathing in mammals. As temperature of the brainstem increases, respiratory frequency concomitantly rises. If temperature continues to increase respiratory arrest (apnea) and death can occur. Previous research has implicated protein kinase G (PKG) activity in regulating neuronal thermosensitivity of neuronal circuits in invertebrates. Here we examine if pharmacological manipulation of PKG activity in a brainstem slice preparation could alter the thermosensitivity of the fictive neonatal mouse respiratory rhythm. We report a striking effect following alteration of PKG activity in the brainstem such that slices treated with the PKG inhibitor KT5823 recovered fictive respiratory rhythm generation significantly faster than control slices and slices treated with a PKG activator (8-Br-cGMP). Furthermore, slices treated with 8-Br-cGMP arrested fictive respiration at a significantly lower temperature than all other treatment groups. In a separate set of experiments we examined if altered PKG activity could regulate the response of slices to hypoxia by altering the protective switch to fictive gasping. Slices treated with 8-Br-cGMP did not switch to the fictive gasp-like pattern following exposure to hypoxia whereas slices treated with KT5823 did display fictive gasping. We propose that PKG activity inversely regulates the amount of stress the neonatal mammalian respiratory rhythm can endure.


Asunto(s)
Tronco Encefálico/fisiopatología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fiebre/fisiopatología , Neuronas/fisiología , Respiración , Potenciales de Acción , Animales , Animales Recién Nacidos , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/enzimología , Carbazoles/farmacología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Fiebre/tratamiento farmacológico , Fiebre/enzimología , Técnicas In Vitro , Ratones , Ratones Endogámicos , Microelectrodos , Neuronas/efectos de los fármacos , Periodicidad , Inhibidores de Proteínas Quinasas/farmacología , Respiración/efectos de los fármacos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...