Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(20): e111161, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36031853

RESUMEN

Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1ß production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1ß production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1ß levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.


Asunto(s)
Células Dendríticas , Inflamasomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Transporte de Membrana , Animales , Autofagia , Caspasa 1/metabolismo , Células Dendríticas/metabolismo , Dextranos/metabolismo , Histidina , Humanos , Interleucina-1beta/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fagosomas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(45): 28251-28262, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33109721

RESUMEN

Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIß-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Células Dendríticas/inmunología , Complejo Mayor de Histocompatibilidad/fisiología , Fagosomas/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células de la Médula Ósea , Citocinas/metabolismo , Lipopolisacáridos , Ratones , Transducción de Señal , Receptor Toll-Like 4/genética , Receptores Toll-Like/metabolismo
3.
Front Oncol ; 9: 1323, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828042

RESUMEN

ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.

4.
Oncogene ; 38(27): 5396-5412, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30923343

RESUMEN

Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival, and migration; however, its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-ß). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-ß-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-ß-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac guanine nucleotide exchange-factors (Rac-GEFs) were also up-regulated in TGF-ß-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-ß-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Proteína Quinasa C-epsilon/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Línea Celular Tumoral , Diglicéridos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática , Humanos , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/efectos de los fármacos
5.
Biochem Soc Trans ; 46(4): 1003-1012, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30065108

RESUMEN

The family of Rho GTPases are involved in the dynamic control of cytoskeleton reorganization and other fundamental cellular functions, including growth, motility, and survival. Rac1, one of the best characterized Rho GTPases, is an established effector of receptors and an important node in signaling networks crucial for tumorigenesis and metastasis. Rac1 hyperactivation is common in human cancer and could be the consequence of overexpression, abnormal upstream inputs, deregulated degradation, and/or anomalous intracellular localization. More recently, cancer-associated gain-of-function mutations in Rac1 have been identified which contribute to tumor phenotypes and confer resistance to targeted therapies. Deregulated expression/activity of Rac guanine nucleotide exchange factors responsible for Rac activation has been largely associated with a metastatic phenotype and drug resistance. Translating our extensive knowledge in Rac pathway biochemistry into a clinical setting still remains a major challenge; nonetheless, remarkable opportunities for cancer therapeutics arise from promising lead compounds targeting Rac and its effectors.


Asunto(s)
Neoplasias/patología , Proteínas de Unión al GTP rac/metabolismo , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Neoplasias/metabolismo , Transducción de Señal
6.
Oncotarget ; 9(47): 28612-28624, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983884

RESUMEN

Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTP-binding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy. To tackle the discrepancies among various reports, we carried out an exhaustive analysis of the potential involvement of P-Rex1 on the activation of the mitogenic Erk pathway. Using a range of luminal breast cancer cellular models, we unequivocally showed that silencing P-Rex1 (transiently, stably, using multiple siRNA sequences) had no effect on the phospho-Erk response upon stimulation with growth factors (EGF, heregulin, IGF-I) or a GPCR ligand (SDF-1). The lack of involvement of P-Rex1 in Erk activation was confirmed at the single cell level using a fluorescent biosensor of Erk kinase activity. Depletion of P-Rex1 from breast cancer cells failed to affect cell cycle progression, cyclin D1 induction, Akt activation and apoptotic responses. In addition, mammary-specific P-Rex1 transgenic mice (MMTV-P-Rex1) did not show any obvious hyperproliferative phenotype. Therefore, despite its crucial role in Rac1 activation and cell motility, P-Rex1 is dispensable for mitogenic or survival responses in breast cancer cells.

7.
J Biol Chem ; 293(22): 8330-8341, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29636415

RESUMEN

Diacylglycerol (DAG) is a key lipid second messenger downstream of cellular receptors that binds to the C1 domain in many regulatory proteins. Protein kinase C (PKC) isoforms constitute the most prominent family of signaling proteins with DAG-responsive C1 domains, but six other families of proteins, including the chimaerins, Ras-guanyl nucleotide-releasing proteins (RasGRPs), and Munc13 isoforms, also play important roles. Their significant involvement in cancer, immunology, and neurobiology has driven intense interest in the C1 domain as a therapeutic target. As with other classes of targets, however, a key issue is the establishment of selectivity. Here, using [3H]phorbol 12,13-dibutyrate ([3H]PDBu) competition binding assays, we found that a synthetic DAG-lactone, AJH-836, preferentially binds to the novel PKC isoforms PKCδ and PKCϵ relative to classical PKCα and PKCßII. Assessment of intracellular translocation, a hallmark for PKC activation, revealed that AJH-836 treatment stimulated a striking preferential redistribution of PKCϵ to the plasma membrane relative to PKCα. Moreover, unlike with the prototypical phorbol ester phorbol 12-myristate 13-acetate (PMA), prolonged exposure of cells to AJH-836 selectively down-regulated PKCδ and PKCϵ without affecting PKCα expression levels. Biologically, AJH-836 induced major changes in cytoskeletal reorganization in lung cancer cells, as determined by the formation of membrane ruffles, via activation of novel PKCs. We conclude that AJH-836 represents a C1 domain ligand with PKC-activating properties distinct from those of natural DAGs and phorbol esters. Our study supports the feasibility of generating selective C1 domain ligands that promote novel biological response patterns.


Asunto(s)
Diglicéridos/química , Lactonas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Células A549 , Unión Competitiva , Células HeLa , Humanos , Ligandos , Unión Proteica , Transporte de Proteínas , Especificidad por Sustrato
8.
Cell Death Dis ; 9(2): 23, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348560

RESUMEN

Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCδ-dependent mitochondrial apoptotic pathway involving caspase-3 activation. In HCT116 colon cancer cells, Roy-Bz specifically triggered the translocation of PKCδ but not other phorbol ester responsive PKCs. Roy-Bz caused a marked inhibition in migration of HCT116 cells in a PKCδ-dependent manner. Additionally, the impairment of colonosphere growth and formation, associated with depletion of stemness markers, indicate that Roy-Bz also targets drug-resistant cancer stem cells, preventing tumor dissemination and recurrence. Notably, in xenograft mouse models, Roy-Bz showed a PKCδ-dependent antitumor effect, through anti-proliferative, pro-apoptotic, and anti-angiogenic activities. Besides, Roy-Bz was non-genotoxic, and in vivo it had no apparent toxic side effects. Collectively, our findings reveal a novel promising anticancer drug candidate. Most importantly, Roy-Bz opens the way to a new era on PKC biology and pharmacology, contributing to the potential redefinition of the structural requirements of isozyme-selective agents, and to the re-establishment of PKC isozymes as feasible therapeutic targets in human diseases.


Asunto(s)
Neoplasias del Colon/terapia , Proteína Quinasa C-delta/uso terapéutico , Neoplasias del Colon/patología , Humanos , Proteína Quinasa C-delta/farmacología
9.
Small GTPases ; 9(4): 297-303, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27588611

RESUMEN

Guanine nucleotide Exchange Factors (GEFs) are responsible for mediating GDP/GTP exchange for specific small G proteins, such as Rac. There has been substantial evidence for the involvement of Rac-GEFs in the control of cancer cell migration and metastatic progression. We have previously established that the Rac-GEF P-Rex1 is a mediator of actin cytoskeleton rearrangements and cell motility in breast cancer cells downstream of HER/ErbB receptors and the G-Protein Coupled Receptor (GPCR) CXCR4. P-Rex1 is highly expressed in luminal A and B breast cancer compared to normal mammary tissue, whereas expression is very low in basal breast cancer, and its expression correlates with the appearance of metastasis in patients. Here, we discuss the involvement of P-Rex1 as an effector of oncogenic/metastatic receptors in breast cancer and underscore its relevance in the convergence of receptor-triggered motile signals. In addition, we provide an overview of our recent findings describing a cross-talk between HER/ErbB receptors and CXCR4, and how this impacts on the activation of P-Rex1/Rac1 signaling, as well as highlight challenges that lie ahead. We propose a model in which P-Rex1 acts as a crucial node for the integration of upstream inputs from HER/ErbB receptors and CXCR4 in luminal breast cancer cells.


Asunto(s)
Receptores ErbB/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo , Animales , Humanos
10.
Mol Cell Biol ; 36(15): 2011-26, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27185877

RESUMEN

The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4.


Asunto(s)
Neoplasias de la Mama/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Receptor ErbB-3/metabolismo , Receptores CXCR4/genética , Proteína de Unión al GTP rac1/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Metástasis de la Neoplasia , Pronóstico , Receptores CXCR4/metabolismo , Transducción de Señal , Activación Transcripcional
11.
Mol Cancer Res ; 13(9): 1336-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26023164

RESUMEN

UNLABELLED: The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is imperative to identify key molecular drivers of this process. This study examines the involvement of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the proliferative, adhesive, and migratory capacities of PC3-ML cells in vitro or in the growth of xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the expression of IL1ß, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key factor for driving the formation of bone metastasis by prostate cancer cells and is a potential therapeutic target for advanced stages of the disease. IMPLICATIONS: This study uncovers an important new function of PKCε in the dissemination of cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a therapeutic target for skeletal metastasis.


Asunto(s)
Neoplasias Óseas/secundario , Complejo Mediador , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína Quinasa C-epsilon/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Xenoinjertos , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Desnudos , ARN Interferente Pequeño/metabolismo
12.
J Biol Chem ; 289(28): 19823-38, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24825907

RESUMEN

Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C-epsilon/biosíntesis , Elementos de Respuesta , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Proteínas de Neoplasias/genética , Proteína Quinasa C-epsilon/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción Sp1/genética
13.
Mol Pharmacol ; 83(5): 1141-54, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23478800

RESUMEN

The small GTPase Rac1 has been widely implicated in mammary tumorigenesis and metastasis. Previous studies established that stimulation of ErbB receptors in breast cancer cells activates Rac1 and enhances motility via the Rac-guanine nucleotide exchange factor P-Rex1. As the Janus tyrosine kinase 2 (Jak2)/signal transducer and activator of transcription 3 (Stat3) pathway has been shown to be functionally associated with ErbB receptors, we asked if this pathway could mediate P-Rex1/Rac1 activation in response to ErbB ligands. Here we found that the anticancer agent cucurbitacin I, a Jak2 inhibitor, reduced the activation of Rac1 and motility in response to the ErbB3 ligand heregulin in breast cancer cells. However, Rac1 activation was not affected by Jak2 or Stat3 RNA interference, suggesting that the effect of cucurbitacin I occurs through a Jak2-independent mechanism. Cucurbitacin I also failed to affect the activation of P-Rex1 by heregulin. Subsequent analysis revealed that cucurbitacin I strongly activates RhoA and the Rho effector Rho kinase (ROCK) in breast cancer cells and induces the formation of stress fibers. Interestingly, disruption of the RhoA-ROCK pathway prevented the inhibitory effect of cucurbitacin I on Rac1 activation by heregulin. Lastly, we found that RhoA activation by cucurbitacin I is mediated by reactive oxygen species (ROS). The ROS scavenger N-acetyl L-cysteine and the mitochondrial antioxidant Mito-TEMPO rescued the inhibitory effect of cucurbitacin I on Rac1 activation. In conclusion, these results indicate that ErbB-driven Rac1 activation in breast cancer cells proceeds independently of the Jak2 pathway. Moreover, they established that the inhibitory effect of cucurbitacin I on Rac1 activity involves the alteration of the balance between Rho and Rac.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Janus Quinasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triterpenos/farmacología , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Ligandos , Células MCF-7 , Neurregulina-1/farmacología , Receptor ErbB-3/metabolismo , Factor de Transcripción STAT3/metabolismo , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
14.
PLoS One ; 7(2): e31714, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22384062

RESUMEN

BACKGROUND: Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established. PRINCIPAL FINDINGS: Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. CONCLUSIONS: Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma/metabolismo , Carcinoma/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteína Quinasa C-epsilon/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Activación Enzimática , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Interferencia de ARN , Transducción de Señal
15.
Cell Signal ; 24(2): 353-362, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21893191

RESUMEN

Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gßγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión Celular , Comunicación Celular , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Neurregulinas/genética , Neurregulinas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
16.
J Biol Chem ; 286(13): 11254-64, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21252239

RESUMEN

Protein kinase C (PKC) isozymes are key signal transducers involved in normal physiology and disease and have been widely implicated in cancer progression. Despite our extensive knowledge of the signaling pathways regulated by PKC isozymes and their effectors, there is essentially no information on how individual members of the PKC family regulate gene transcription. Here, we report the first PKC isozyme-specific analysis of global gene expression by microarray using RNAi depletion of diacylglycerol/phorbol ester-regulated PKCs. A thorough analysis of this microarray data revealed unique patterns of gene expression controlled by PKCα, PKCδ, and PKCε, which are remarkably different in cells growing in serum or in response to phorbol ester stimulation. PKCδ is the most relevant isoform in controlling the induction of genes by phorbol ester stimulation, whereas PKCε predominantly regulates gene expression in serum. We also established that two PKCδ-regulated genes, FOSL1 and BCL2A1, mediate the apoptotic effect of phorbol esters or the chemotherapeutic agent etoposide in prostate cancer cells. Our studies offer a unique opportunity for establishing novel transcriptional effectors for PKC isozymes and may have significant functional and therapeutic implications.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Estudio de Asociación del Genoma Completo , Proteína Quinasa C/metabolismo , Transcripción Genética/fisiología , Antineoplásicos Fitogénicos/farmacología , Carcinógenos/farmacología , Línea Celular , Etopósido/farmacología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ésteres del Forbol/farmacología , Proteína Quinasa C/genética , Transcripción Genética/efectos de los fármacos
17.
Mol Cell ; 40(6): 877-92, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172654

RESUMEN

While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gßγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gßγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Oncogénicas v-erbB/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...