RESUMEN
Panama is a country with endemic Dengue virus (DENV) transmission since its reintroduction in 1993. The four serotypes have circulated in the country and the region of the Americas, however, DENV-4 confirmed autochthonous cases have not been identified since 2000, despite its circulation in neighboring countries. Here, we report DENV-4 detection in Panama in the last four-month period of 2023 with co-circulation of the other serotypes, this was associated with a peak of dengue cases during the dry season even though most dengue outbreaks are described in the rainy season. Complete genomes of DENV-4 allowed us to determine that cases were caused by DENV-4 genotype IIb, the same genotype as 23 years ago, with high similarity to DENV-4 sequences circulating in Nicaragua and El Salvador during 2023. This report shows the importance of maintaining serotype and genotype surveillance for early detection of new variants circulating in the country.
Asunto(s)
Virus del Dengue , Dengue , Genoma Viral , Genotipo , Filogenia , Serogrupo , Virus del Dengue/genética , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Panamá/epidemiología , Dengue/epidemiología , Dengue/virología , Humanos , Genoma Viral/genética , ARN Viral/genética , Estaciones del Año , Brotes de Enfermedades , Nicaragua/epidemiologíaRESUMEN
BACKGROUND: Intrauterine fetal demise is a recognized complication of coronavirus disease 2019 in pregnant women and is associated with histopathological placental lesions. The pathological mechanism and virus-induced immune response in the placenta are not fully understood. A detailed description of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced inflammation in the placenta during fetal demise is crucial for improved clinical management. CASE PRESENTATION: We report the case of a 27-week gestation SARS-CoV-2-asymptomatic unvaccinated pregnant woman without comorbidities or other risk factors for negative pregnancy outcomes with a diagnosis of intrauterine fetal demise. Histopathological findings corresponded to patterns of subacute inflammation throughout the anatomic compartments of the placenta, showing severe chorioamnionitis, chronic villitis and deciduitis, accompanied by maternal and fetal vascular malperfusion. Our immunohistochemistry results revealed infiltration of CD68+ macrophages, CD56+ Natural Killer cells and scarce CD8+ T cytotoxic lymphocytes at the site of placental inflammation, with the SARS-CoV-2 nucleocapsid located in stromal cells of the chorion and chorionic villi, and in decidual cells. CONCLUSION: This case describes novel histopathological lesions of inflammation with infiltration of plasma cells, neutrophils, macrophages, and natural killer cells associated with malperfusion in the placenta of a SARS-CoV-2-infected asymptomatic woman with intrauterine fetal demise. A better understanding of the inflammatory effects exerted by SARS-CoV-2 in the placenta will enable strategies for better clinical management of pregnant women unvaccinated for SARS-CoV-2 to avoid fatal fetal outcomes during future transmission waves.
Asunto(s)
COVID-19 , Muerte Fetal , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Humanos , Femenino , Embarazo , COVID-19/complicaciones , COVID-19/inmunología , Muerte Fetal/etiología , Adulto , Placenta/patología , Placenta/virología , Corioamnionitis/patología , Inflamación , Células Asesinas Naturales/inmunologíaRESUMEN
Background: At the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, transfusion of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) emerged as a potential therapeutic strategy to help patients severely afflicted by COVID-19. The efficacy of CCP has been controversial as it depends on many variables pertaining to the plasma donor and the patient with COVID-19, for example, time of convalescence or symptoms onset. This feasibility and descriptive study aimed to assess the safety of multiple doses of CCP in mechanically ventilated, intubated patients with respiratory failure due to COVID-19. Methods: A cohort of 30 patients all experiencing severe respiratory failure and undergoing invasive mechanical ventilation in an intensive care unit, received up to five doses of 300-600 mL of CCP on alternate days (0, 2, 4, 6, and 8) until extubation, futility, or death. Results: Nineteen patients received five doses, seven received four, and four received two or three doses. At 28-day follow-up mark, 57% of patients recovered and were sent home, and the long-term mortality rate was 27%. Ten severe adverse events reported in the study were unrelated to CCP transfusion. Independent of the number of transfused doses, most patients had detectable levels of total and neutralizing antibodies in plasma. Conclusion: This study suggests that transfusion of multiple doses of CCP is safe. This strategy may represent a viable option for future studies, given the potential benefit of CCP transfusions during the early stages of infection in unvaccinated populations and in settings where monoclonal antibodies or antivirals are contraindicated or unavailable.
RESUMEN
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Fiebre Chikungunya/complicaciones , Proteómica , Virus Chikungunya/genética , Citocinas/metabolismoRESUMEN
Madariaga virus (MADV) and Venezuelan equine encephalitis virus (VEEV) are emerging arboviruses affecting rural and remote areas of Latin America. However, there are limited clinical and epidemiological reports available, and outbreaks are occurring at an increasing frequency. We addressed this gap by analyzing all the available clinical and epidemiological data of MADV and VEEV infections recorded since 1961 in Panama. A total of 168 of human alphavirus encephalitis cases were detected in Panama from 1961 to 2023. Here we describe the clinical signs and symptoms and epidemiological characteristics of these cases, and also explored signs and symptoms as potential predictors of encephalitic alphavirus infection when compared to those of other arbovirus infections occurring in the region. Our results highlight the challenges clinical diagnosis of alphavirus disease in endemic regions with overlapping circulation of multiple arboviruses.
RESUMEN
Parechovirus A (PeV-A, Parechovirus, Picornaviridae) are human pathogens associated with mild to severe gastrointestinal and respiratory diseases in young children. While several studies have investigated the association of PeV-A with human disease, little is known about its epidemiology or detection in Latin America. Between the years 2014 and 2015, a total of 200 samples were collected from Panamanian pediatric patients aged < 16 years old exhibiting symptoms associated with respiratory (n = 64), gastrointestinal (n = 68), or neurological (n = 68) diseases. These samples were gathered from patients who had previously received negative diagnoses for the main respiratory viruses, rotavirus, and neurological viruses like herpes virus, enterovirus, and cytomegalovirus. The presence of PeV-A was analyzed by real time RT-PCR.Eight positive PeV-A infections (4.0%, 95% CI: 1.7 to 7.7) were detected: two in respiratory samples (3.0%, 95% CI: 0.3 to 10.8), five in gastrointestinal samples (7.3%, 95% CI: 2.4 to 16.3), and one in cerebrospinal fluid (1.5%, 95% CI: 1.4 to 7.9). The study provides evidence of PeV-A circulation in Panama and the data collectively, remarked on the importance of considering PeV-A in the Panamanian pediatric diagnostic landscape, especially when conventional testing for more common viruses yields negative results.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Parechovirus , Infecciones por Picornaviridae , Picornaviridae , Humanos , Niño , Lactante , Preescolar , Adolescente , Parechovirus/genética , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/epidemiología , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Picornaviridae/genéticaRESUMEN
Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.
Asunto(s)
Alphavirus , Culicidae , Dengue , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina Oriental , Encefalomielitis Equina Venezolana , Humanos , Animales , Caballos/genética , Virus de la Encefalitis Equina del Este/genética , Encefalomielitis Equina Venezolana/diagnóstico , Encefalomielitis Equina Venezolana/epidemiología , Culicidae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Filogenia , Estudios Prospectivos , Vigilancia en Salud Pública , Estudios Retrospectivos , Alphavirus/genética , ARNRESUMEN
Hepatitis E Virus (HEV) infection is an emergent zoonotic disease of increasing concern in developed regions. HEV genotype 3 (HEV-3) is mainly transmitted through consumption of contaminated food in high-income countries and is classified into at least 13 subtypes (3a-3n), based on p-distance values from complete genomes. In Latin America, HEV epidemiology studies are very scant. Our group has previously detected HEV3 in clinical cases, swine, wild boars, captive white-collared peccaries, and spotted deer from Uruguay. Herein, we aimed to provide novel insights and an updated overview of the molecular epidemiology of zoonotic HEV in Uruguay, including data from wastewater-based surveillance studies. A thorough analysis of HEV whole genomes and partial ORF2 sequences from Uruguayan human and domestic pig strains showed that they formed a separate monophyletic cluster with high nucleotide identity and exhibited p-distance values over the established cut-off (0.093) compared with reference subtypes' sequences. Furthermore, we found an overall prevalence of 10.87% (10/92) in wastewater, where two samples revealed a close relationship with humans, and animal reservoirs/hosts isolates from Uruguay. In conclusion, a single, new HEV-3 subtype currently circulates in different epidemiological settings in Uruguay, and we propose its designation as 3o along with its reference sequence.
Asunto(s)
Ciervos , Virus de la Hepatitis E , Hepatitis E , Enfermedades de los Porcinos , Porcinos , Animales , Humanos , Virus de la Hepatitis E/genética , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Uruguay/epidemiología , Filogenia , Genotipo , Ciervos/genética , Sus scrofa/genética , Monitoreo del Ambiente , ARN Viral/genéticaRESUMEN
We detected Leishmania RNA virus 1 (LRV1) in 11 isolates of Leishmania (Viannia) panamensis collected during 2014-2019 from patients from different geographic areas in Panama. The distribution suggested a spread of LRV1 in L. (V.) panamensis parasites. We found no association between LRV1 and an increase in clinical pathology.
Asunto(s)
Leishmania guyanensis , Leishmaniasis Cutánea , Leishmaniasis Mucocutánea , Leishmaniavirus , Humanos , Leishmania guyanensis/genética , Leishmaniasis Mucocutánea/epidemiología , Leishmaniavirus/genética , Panamá/epidemiologíaRESUMEN
Scientific collaborations among nations to address common problems and to build international partnerships as part of science diplomacy is a well-established notion. The international flow of people and ideas has played an important role in the advancement of the 'Sciences' and the current pandemic scenario has drawn attention towards the genuine need for a stronger role of science diplomacy, science advice and science communication. In dealing with the COVID-19 pandemic, visible interactions across science, policy, science communication to the public and diplomacy worldwide have promptly emerged. These interactions have benefited primarily the disciplines of knowledge that are directly informing the pandemic response, while other scientific fields have been relegated. The effects of the COVID-19 pandemic on scientists of all disciplines and from all world regions are discussed here, with a focus on early-career researchers (ECRs), as a vulnerable population in the research system. Young academies and ECR-driven organisations could suggest ECR-powered solutions and actions that could have the potential to mitigate these effects on ECRs working on disciplines not related to the pandemic response. In relation with governments and other scientific organisations, they can have an impact on strengthening and creating fairer scientific systems for ECRs at the national, regional, and global level.
RESUMEN
Early in the SARS-CoV-2 pandemic, many national public health authorities implemented non-pharmaceutical interventions to mitigate disease outbreaks. Panamá established mandatory mask use two months after its first documented case. Initial compliance was high, but diverse masks were used in public areas. We studied behavioral dynamics of mask use through the first two COVID-19 waves in Panama, to improve the implementation of effective, low-cost public health containment measures when populations are exposed to novel air-borne pathogens. Mask use behavior was recorded from pedestrians in four Panamanian populations (August to December 2020). We recorded facial coverings and if used, the type of mask, and gender and estimated age of the wearer. Our results showed that people were highly compliant (>95%) with mask mandates and demonstrated important population-level behaviors: (1) decreasing use of cloth masks over time, and increasing use of surgical masks; (2) mask use was 3-fold lower in suburban neighborhoods than other public areas and (3) young people were least likely to wear masks. Results help focus on highly effective, low-cost, public health interventions for managing and controlling a pandemic. Considerations of behavioral preferences for different masks, relative to pricing and availability, are essential for optimizing public health policies. Policies to increase the availability of effective masks, and behavioral nudges to increase acceptance, and to facilitate mask usage, during the ongoing SARS-CoV-2 pandemic, and for future pandemics of respiratory pathogens, are key tools, especially for nations lagging in access to expensive vaccines and pharmacological approaches.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Humanos , Máscaras , Pandemias , Salud PúblicaRESUMEN
[This corrects the article DOI: 10.1057/s41599-021-00944-1.].
RESUMEN
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major international public health concern. The World Health Organization (WHO) declared the pandemic of coronavirus disease 2019 (COVID-19) on March 11, 2020. In Panama, the first SARS-CoV-2 infection was confirmed on March 9, 2020, and the first fatal case associated to COVID-19 was reported on March 10. This report presents the case of a 44-year-old female who arrived at the hospital with a respiratory failure, five days after the first fatal COVID-19 case, and who was living in a region where hantavirus pulmonary syndrome cases caused by Choclo orthohantavirus (CHOV), are prevalent. Thus, the clinical personnel set a differential diagnosis to determine a respiratory disease caused by the endemic CHOV or the new pandemic SARS-CoV-2. This case investigation describes the first coinfection by SARS-CoV-2 and CHOV worldwide. PCR detected both viruses during early stages of the disease and the genomic sequences were obtained. The presence of antibodies was determined during the patient's hospitalization. After 23 days at the intensive care unit, the patient survived with no sequelae, and antibodies against CHOV and SARS-CoV-2 were still detectable 12 months after the disease. The detection of the coinfection in this patient highlights the importance, during a pandemic, of complementing the testing and diagnosis of the emergent agent, SARS-CoV-2, with other common endemic respiratory pathogens and other zoonotic pathogens, like CHOV, in regions where they are of public health concern.
RESUMEN
We report a case of reinfection by SARS-CoV-2 with the second virus harboring amino acid changes in the Spike protein (141-143del, D215A, ins215AGY, L452R, D614G), orf1a, helicase, orf3a, and Nucleocapside. The virus associated with the reinfection, from an endemic lineage containing the S:L452R immune escape mutation, was circulating in Panama at the time.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Proteínas de la Nucleocápside , Reinfección , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
There is limited evidence regarding severe acute respiratory syndrome coronavirus 2 infection in the placenta of pregnant women who tested positive, and if this could be a route for vertical transmission of the virus in utero. We present the cases of 2 pregnant women in their third trimester who were admitted for delivery by cesarean delivery and who, through universal screening, tested positive for coronavirus disease 2019. The maternal and fetal sides of the placenta were sectioned from both patients for viral analysis. Real-time polymerase chain reaction analysis of the placental-extracted RNA revealed a severe acute respiratory syndrome coronavirus 2 infection on the fetal side of the placenta in both patients. The virus was isolated from the patient with the lowest cycle threshold value on the fetal side of the placenta. Whole genome sequencing showed that the virus detected in this placenta was from the B1 lineage. Immunohistochemical analysis of the placental tissue detected severe acute respiratory syndrome coronavirus 2 in the endothelial cells of chorionic villi vessels proximal to both the maternal and fetal sides, with a granular cytoplasmic pattern and perinuclear reinforcement. Histologic examination of the placenta also detected a dense infiltrate of lymphoid cells around decidual vessels and endothelial cells with cytopathic changes, especially on the maternal side. Nasopharyngeal swabs from the infants that were subjected to reverse transcription quantitative polymerase chain reaction testing were negative for severe acute respiratory syndrome coronavirus 2 at 24 hours after birth. A follow-up analysis of the infants for immunoglobin G and immunoglobin M expression, clinical manifestations, and long-term developmental abnormalities is recommended.
RESUMEN
Science diplomacy is a fast-growing field of research, policy, and practice dedicated to understanding and reinforcing the connections between science and international affairs to tackle national, regional, and global issues. By aligning science and diplomacy, countries can attract talent, strengthen their national research ecosystems, provide avenues for participation of scientists in policy, and coordinate integrated solutions to challenges with technical dimensions. While Latin America has a long tradition of bilateral and regional cooperation, science still plays a marginal role in foreign policy, as has become evidenced by the response to the COVID-19 pandemic. With few exceptions, Latin American nations have a relatively immature science, technology, and innovation ecosystem, compounded by low public and private investments in research, coexisting with profound socio-economic inequalities, and large vulnerable populations. Such challenging conditions have created barriers to a fluid relationship between science and diplomacy, fundamentally characterized by inefficient communication between scientists and policymakers, weak collaboration channels, and duplicated roles, which altogether perpetuate siloed mentalities and a lack of trust between the two communities. Over the last decade, a first influential wave of Latin American scientists, diplomats, and other professionals, including five of the co-authors, have undertaken science diplomacy training provided by specialized organizations. Through these experiences, we recognized the need to elevate awareness and build capacities in science diplomacy in our respective countries and overall, across Latin America. Here, we describe emerging efforts and mechanisms to bridge the gap between scientists and policymakers at the national and regional level. Furthermore, we offer recommendations to amplify the impact of those pioneering initiatives toward consolidating a robust science diplomacy practice across the region. The national experiences described from Costa Rica, Mexico, and Panama can serve as a roadmap for other Latin American nations in the early process of developing a science diplomacy strategy, so they can also align themselves to a collective pathway. Most critically, we propose a way forward so that Latin America can leapfrog beyond disjointed training of individuals into integrated institutional strategies that can harness the tools of science diplomacy to enhance science-informed multilateral cooperation and enable more effective science-informed policymaking.
RESUMEN
Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has reached 28 million cases worldwide in 1 year. The serological detection of antibodies against the virus will play a pivotal role in complementing molecular tests to improve diagnostic accuracy, contact tracing, vaccine efficacy testing, and seroprevalence surveillance. Here, we aimed first to evaluate a lateral flow assay's ability to identify specific IgM and IgG antibodies against SARS-CoV-2 and second, to report the seroprevalence estimates of these antibodies among health care workers and healthy volunteer blood donors in Panama. We recruited study participants between April 30th and July 7th, 2020. For the test validation and performance evaluation, we analyzed serum samples from participants with clinical symptoms and confirmed positive RT-PCR for SARS-CoV-2, and a set of pre-pandemic serum samples. We used two by two table analysis to determine the test positive and negative percentage agreement as well as the Kappa agreement value with a 95% confidence interval. Then, we used the lateral flow assay to determine seroprevalence among serum samples from COVID-19 patients, potentially exposed health care workers, and healthy volunteer donors. Our results show this assay reached a positive percent agreement of 97.2% (95% CI 84.2-100.0%) for detecting both IgM and IgG. The assay showed a Kappa of 0.898 (95%CI 0.811-0.985) and 0.918 (95% CI 0.839-0.997) for IgM and IgG, respectively. The evaluation of serum samples from hospitalized COVID-19 patients indicates a correlation between test sensitivity and the number of days since symptom onset; the highest positive percent agreement [87% (95% CI 67.0-96.3%)] was observed at ≥15 days post-symptom onset (PSO). We found an overall antibody seroprevalence of 11.6% (95% CI 8.5-15.8%) among both health care workers and healthy blood donors. Our findings suggest this lateral flow assay could contribute significantly to implementing seroprevalence testing in locations with active community transmission of SARS-CoV-2.
RESUMEN
We report an epidemiologic analysis of 4,210 cases of infection with severe acute respiratory syndrome coronavirus 2 and genetic analysis of 313 new near-complete virus genomes in Panama during March 9-April 16, 2020. Although containment measures reduced R0 and Rt, they did not interrupt virus spread in the country.