Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(5): e70016, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39384165

RESUMEN

Microplastics (MPs) are released into the environment through human activities and are transported by rivers from land to sea. Biofilms, which are ubiquitous in aquatic ecosystems such as rivers, may play an essential role in the fate of MPs and their ingestion by biofilm protists. To assess this, biofilms were naturally grown on clay tiles in the River Rhine, Germany, and analysed in a combined field and laboratory study. Compared to the ambient river water, biofilms grown for 6, 12, and 18 months in the River Rhine contained up to 10 times more MPs. Between 70% and 78% of all MPs were smaller than 50 µm. In laboratory experiments, clay tiles covered with 1-month-old naturally grown biofilm retained 6-12 times more MPs than clay tiles without biofilm coverage. Furthermore, the ingestion of MPs of 6 and 10 µm by the ciliate Stentor coeruleus was confirmed, and a positive correlation between ingestion rates and ambient MP concentrations was found. The results are relevant for particle transport models in riverine systems, risk assessment of MPs regarding their distribution and fate in the aquatic environment, and the effects of MPs on micro- and macroorganisms.


Asunto(s)
Biopelículas , Microplásticos , Ríos , Ríos/microbiología , Ríos/química , Ríos/parasitología , Microplásticos/análisis , Biopelículas/crecimiento & desarrollo , Alemania , Cilióforos/fisiología , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 58(29): 13047-13055, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38977269

RESUMEN

Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 µm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 µm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 µg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.


Asunto(s)
Agricultura , Cromatografía de Gases y Espectrometría de Masas , Plásticos , Polietileno , Pirólisis , Contaminantes del Suelo , Suelo , Polietileno/química , Suelo/química , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Microplásticos/análisis , Tereftalatos Polietilenos/química , Monitoreo del Ambiente/métodos
3.
Anal Bioanal Chem ; 416(15): 3543-3554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649517

RESUMEN

Environmental pollution by plastics is a global issue of increasing concern. However, microplastic analysis in complex environmental matrices, such as soil samples, remains an analytical challenge. Destructive mass-based methods for microplastic analysis do not determine plastics' shape and size, which are essential parameters for reliable ecological risk assessment. By contrast, nondestructive particle-based methods produce such data but require elaborate, time-consuming sample preparation. Thus, time-efficient and reliable methods for microplastic analysis are needed. The present study explored the potential of frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) for rapidly and reliably identifying as well as differentiating plastics and natural materials from terrestrial environments. We investigated the fluorescence spectra of ten natural materials from terrestrial environments, tire wear particles, and eleven different transparent plastic granulates <5 mm to determine the optimal excitation wavelength for identification and differentiation via FD-FLIM under laboratory conditions. Our comparison of different excitation wavelengths showed that 445 nm excitation exhibited the highest fluorescence intensities. 445 nm excitation was also superior for identifying plastic types and distinguishing them from natural materials from terrestrial environments with a high probability using FD-FLIM. We could demonstrate that FD-FLIM analysis has the potential to contribute to a streamlined and time-efficient direct analysis of microplastic contamination. However, further investigations on size-, shape-, color-, and material-type detection limitations are necessary to evaluate if the direct identification of terrestrial environmental samples of relatively low complexity, such as a surface inspection soil, is possible.

4.
Sci Total Environ ; 927: 171927, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556006

RESUMEN

Rivers are important transport pathways for microplastics into the ocean, but they can also be potential sinks due to microplastic deposition in the sediments of the river bed and adjacent floodplains. In particular, floods can (re)mobilise microplastics from sediments and floodplains, (re)deposit and relocate them depending on the floodplain topography. The knowledge about fluvial microplastic input to floodplains, their spatial distribution and their fate in floodplain soils is limited. To investigate this topic, we sampled soil at a depth of 5-20 cm along three transects in three different Rhine floodplains. We analysed the soil samples in tandem with pyrolysis GC/MS and ATR- & µ-FPA-FTIR for their microplastic abundance and mass concentrations. To study the influence of flood frequency on the microplastic abundance in the three floodplains, we fitted a hydrodynamic flood model (MIKE 21, DHI, Hørsholm, Denmark) and related the results to the respective spatial microplastic distribution. We found similar microplastic distribution patterns in each floodplain. The highest microplastic abundance (8516-70,124 microplastics kg-1) and mass concentration (46.2-141.6 mg kg-1) were consistently found in the farthest transects from the Rhine in a topographical depression. This microplastic distribution pattern is detectable with both, pyrolysis GC/MS and FTIR. The strongest correlation between the results of both methods was found for small, abundant microplastic particles. Our results suggest that the spatial distribution of microplastics in floodplains is related to the combination of flood frequency and local topography, that ought to be explicitly considered in future studies conducted in floodplains. Finally, our results indicate that pyrolysis GC/MS and FTIR data are comparable under certain conditions, which may help in the decision for the analytical method and sampling design in future studies.

5.
Heliyon ; 10(3): e25133, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322960

RESUMEN

Microplastic pollution of the environment has been extensively studied, with recent studies focusing on the prevalence of microplastics in the environment and their effects on various organisms. Identification methods that simplify the extraction and analysis process to the point where the extraction can be omitted are being investigated, thus enabling the direct identification of microplastic particles. Currently, microplastic samples from environmental matrices can only be identified using time-consuming extraction, sample processing, and analytical methods. Various spectroscopic methods are currently employed, such as micro Fourier-transform infrared, attenuated total reflectance, and micro Raman spectroscopy. However, microplastics in environmental matrices cannot be directly identified using these spectroscopic methods. Investigations using frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) to identify and differentiate plastics from environmental materials have yielded promising results for directly identifying microplastics in an environmental matrix. Herein, two artificially prepared environmental matrices that included natural soil, grass, wood, and high-density polyethylene were investigated using FD-FLIM. Our first results showed that we successfully identified one plastic type in the two artificially prepared matrices using FD-FLIM. However, further research must be conducted to improve the FD-FLIM method and explore its limitations for directly identifying microplastics in environmental samples.

6.
Sci Rep ; 14(1): 2282, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280916

RESUMEN

Research on the plastic contamination of organic fertilizer (compost) has largely concentrated on particles and fragments > 1 mm. Small, submillimeter microplastic particles may be more hazardous to the environment. However, research on their presence in composts has been impeded by the difficulty to univocally identify small plastic particles in such complex matrices. Here a method is proposed for the analysis of particles between 0.01 and 1.0 mm according to number, size, and polymer type in compost. As a first demonstration of its potential, the method is used to determine large and small microplastic in composts from eight municipal compost producing plants: three simple biowaste composters, four plants processing greenery and cuttings and one two-stage biowaste digester-composter. While polyethylene, PE, tends to dominate among fragments > 1 mm, the microplastic fraction contained more polypropylene, PP. Whereas the contamination with PE/PP microplastic was similar over the investigated composts, only composts prepared from biowaste contained microplastic with a signature of biodegradable plastic, namely poly(butylene adipate co-terephthalate), PBAT. Moreover, in these composts PBAT microplastic tended to form the largest fraction. When the bulk of residual PBAT in the composts was analyzed by chloroform extraction, an inverse correlation between the number of particles > 0.01 mm and the total extracted amount was seen, arguing for breakdown into smaller particles, but not necessarily a mass reduction. PBAT oligomers and monomers as possible substrates for subsequent biodegradation were not found. Remaining microplastic will enter the environment with the composts, where its subsequent degradability depends on the local conditions and is to date largely uninvestigated.


Asunto(s)
Compostaje , Plásticos , Plásticos/análisis , Microplásticos , Polímeros , Polipropilenos
8.
Sci Total Environ ; 903: 166334, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37591375

RESUMEN

Microplastics (MPs) are an anthropogenic pollutant of emerging concern prominent in both raw and treated municipal wastewater as well as urban and agricultural run-off. There is a critical need for the mitigation of both point- and diffuse sources, with treatment wetlands a possible sustainable nature-based solution. In this study, the possible retention of MPs in treatment wetlands of the widely used surface flow (SF) type was investigated. In- and outflow water, as well as atmospheric deposition, at a full-scale reed-based SF wetland (operating as a polishing phase of municipal wastewater treatment) was analyzed for MPs in a size range of 25-1000 µm. FPA-based µFT-IR spectroscopic imaging was used in combination with automated data analysis software, allowing for an unbiased assessment of MP numbers, polymer types and size distribution. Inflow water samples (secondary treated wastewater) contained 104 MPs m-3 and 56 MPs m-3 in sampling campaigns 1 and 2, respectively. Passage through the SF wetland increased the MP concentration in the water by 92 % during a rain intense period (campaign 1) and by 43 % during a low precipitation period (campaign 2). The MP particle numbers, size and polymer type distribution varied between the two sampling campaigns, making conclusions around the fate of specific types of MPs in SF wetlands difficult. Atmospheric deposition was measured to be 590 MPs m-2 week-1 during the rain-intense period. Our findings point towards atmospheric deposited MPs as an important factor in the fate of MPs in SF wetlands, causing an increase of MP concentrations, and potentially explaining the variations observed in MP concentrations in wetland effluent and removal efficiency. Furthermore, atmospheric deposition might also be a reason for the considerable inter-study variation regarding MPs removal efficiency in SF wetlands found in the available literature.

9.
Sci Total Environ ; 902: 166463, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607635

RESUMEN

Rivers play a major role in the distribution of microplastics (MPs) in the environment, however, research on temporal variations in these highly dynamic systems is still in its infancy. To date, most studies dealing with the seasonality of MP contamination in rivers focus on bi-yearly analysis, while temporal fluctuations over the course of the year are rarely studied. To shed more light on seasonal variability of MP abundance and potential driving factors, we have thus sampled the water surface of one location in the Weser River in Germany monthly over one entire year. In our study, we targeted MP in the size range 10-5000 µm, using two different state-of-the-art sampling methods (manta net for large MP (l-MP; 500-5000 µm) and a filtration system for small MP (s-MP; 10-500 µm)) and analysis techniques (ATR-FTIR and FPA-µFTIR) for chemical identification. Our findings show a strong size-dependent positive correlation of the MP concentration with discharge rates (specifically direct runoff) and suspended particulate matter (SPM) for s-MPs, specifically in the size range 10-149 µm. L-MPs, however, show a different environmental behaviour and do not follow these patterns. With our study, we were able to deliver a much higher temporal resolution, covering a broader size range of MPs compared to most studies. Our findings point towards an interplay of two possible mechanisms: a) the riverbeds play an important role in large-scale MP and SPM release via resuspension during high discharge events, and b) precipitation-driven soil erosion and runoff from urban surfaces (e.g. rain sewers) introduce MP and SPM. Hence, our study serves as a basis for more detailed investigations of MP transport in and between ecosystems.

10.
Anal Bioanal Chem ; 415(15): 2975-2987, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36939884

RESUMEN

One of the biggest issues in microplastic (MP, plastic items <5 mm) research is the lack of standardisation and harmonisation in all fields, reaching from sampling methodology to sample purification, analytical methods and data analysis. This hampers comparability as well as reproducibility among studies. Concerning chemical analysis of MPs, Fourier-transform infrared (FTIR) spectroscocopy is one of the most powerful tools. Here, focal plane array (FPA) based micro-FTIR (µFTIR) imaging allows for rapid measurement and identification without manual preselection of putative MP and therefore enables large sample throughputs with high spatial resolution. The resulting huge datasets necessitate automated algorithms for data analysis in a reasonable time frame. Although solutions are available, little is known about the comparability or the level of reliability of their output. For the first time, within our study, we compare two well-established and frequently applied data analysis algorithms in regard to results in abundance, polymer composition and size distributions of MP (11-500 µm) derived from selected environmental water samples: (a) the siMPle analysis tool (systematic identification of MicroPlastics in the environment) in combination with MPAPP (MicroPlastic Automated Particle/fibre analysis Pipeline) and (b) the BPF (Bayreuth Particle Finder). The results of our comparison show an overall good accordance but also indicate discrepancies concerning certain polymer types/clusters as well as the smallest MP size classes. Our study further demonstrates that a detailed comparison of MP algorithms is an essential prerequisite for a better comparability of MP data.

11.
Sci Total Environ ; 857(Pt 3): 159610, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36273563

RESUMEN

The increasing accumulation of microplastics (MP) in the environment is considered one of the most important environmental challenges of our times. Reliable extraction and detection methods for MP in environmental samples are essential for determining the extent of pollution and assessing ecological risks. However, extraction of MP from complex environmental matrices such as soil remains technically challenging. Today, density-based extractions with saturated salt solutions are widely applied. Nevertheless, current methods do not allow for the fractionation of different MP particle types according to their specific polymer densities. Here, we present a novel isopycnic ultracentrifugation approach for the simultaneous extraction and fractionation of MP mixtures based on the particle-specific buoyant densities. In this proof-of-concept study, diffusion-based density gradients were prepared using caesium chloride media, covering a density range between 1.1 and 1.5 g mL-1, sufficient to resolve many common polymer densities. We selected MP particles with a low (polyamide; PA66), medium (polybutylene adipate terephthalate; PBAT), and high (polyethylene terephthalate; PET) density to validate separation performance. Both pristine and soil-incubated MP mixtures showed clear banding patterns at expected buoyant densities after isopycnic separation. µFTIR imaging of subsamples collected from resolved MP fractions showed a polymer-specific separation of ≥87.6 %. In addition, the quantitative recovery of MP particles from soil was between 86 and 99 %. The potential of isopycnic ultracentrifugation to preserve MP-associated biofilms was also assessed. Soil-incubated MP particles were inspected by confocal laser scanning microscopy before and after isopycnic separation, indicating a preservation of bioorganic structures. Hence, isopycnic ultracentrifugation offers a powerful novel approach for a polymer-specific extraction and resolution of MP particles with a wide potential for applications in MP research.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Contaminación Ambiental , Suelo , Ultracentrifugación , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
12.
NanoImpact ; 29: 100441, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427812

RESUMEN

Contamination of the environment with nano-and microplastic particles (NMPs) and its putative adverse effects on organisms, ecosystems, and human health is gaining increasing scientific and public attention. Various studies show that NMPs occur abundantly within the environment, leading to a high likelihood of human exposure to NMPs. Here, different exposure scenarios can occur. The most notable exposure routes of NMPs into the human body are via the airways and gastrointestinal tract (GIT) through inhalation or ingestion, but also via the skin due to the use of personal care products (PCPs) containing NMPs. Once NMPs have entered the human body, it is possible that they are translocated from the exposed organ to other body compartments. In our review article, we combine the current knowledge on the (1) exposure routes of NMPs to humans with the basic understanding of the potential (2) translocation mechanisms into human tissues and, consequently, their (3) fate within the human body. Regarding the (1) exposure routes, we reviewed the current knowledge on the occurrence of NMPs in food, beverages, personal care products and the air (focusing on indoors and workplaces) and found that the studies suggest an abundant presence of MPs within the exposure scenarios. The overall abundance of MPs in exposure matrices relevant to humans highlights the importance of understanding whether NMPs have the potential for tissue translocation. Therefore, we describe the current knowledge on the potential (2) translocation pathways of NMPs from the skin, GIT and respiratory systems to other body compartments. Here, particular attention was paid to how likely NMPs can translocate from the primary exposed organs to secondary organs due to naturally occurring defence mechanisms against tissue translocation. Based on the current understanding, we conclude that a dermal translocation of NMPs is rather unlikely. In contrast, small MPs and NPs can generally translocate from the GIT and respiratory system to other tissues. Thus, we reviewed the existing literature on the (3) fate of NMPs within the human body. Based on the current knowledge of the contamination of human exposure routes and the potential translocation mechanisms, we critically discuss the size of the detected particles reported in the fate studies. In some cases, the particles detected in human tissue samples exceed the size of a particle to overcome biological barriers allowing particle translocation into tissues. Therefore, we emphasize the importance of critically reading and discussing the presented results of NMP in human tissue samples.


Asunto(s)
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Ecosistema , Tracto Gastrointestinal/metabolismo , Sistema Respiratorio/metabolismo
13.
Sci Total Environ ; 847: 157608, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901884

RESUMEN

Plastic pollution is considered one of the causes of global change. However, water soluble synthetic polymers (WSSPs) have been neglected so far, although they are used in several industrial, dietary, domestic and biomedical products. Moreover, they are applied in wastewater treatment plants (WWTPs) as flocculants and coagulant agents. Hence, their presence in the aquatic environment as well as their uptake by aquatic organisms is probable, whereas no data are available regarding their potential adverse effects. Here we show in the freshwater key species D. magna exposed to five different WSSPs life history changes along with an altered level of reactive oxygen species, although acute mortality was not observed. Since daphnids act as keystone species in lake ecosystems by controlling phytoplankton biomass, even sublethal effects such as WSSPs induced changes in life history may result in cascading effects, from lower to higher trophic levels, which in turn could affect the whole food web.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Microplásticos , Plásticos/toxicidad , Polímeros/toxicidad , Especies Reactivas de Oxígeno , Agua , Contaminantes Químicos del Agua/análisis
14.
Sci Rep ; 12(1): 9021, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637211

RESUMEN

Biodegradable plastics (BDP) are expected to mineralize easily, in particular under conditions of technical composting. However, the complexity of the sample matrix has largely prevented degradation studies under realistic conditions. Here composts and fertilizers from state-of-the-art municipal combined anaerobic/aerobic biowaste treatment plants were investigated for residues of BDP. We found BDP fragments > 1 mm in significant numbers in the final composts intended as fertilizer for agriculture and gardening. Compared to pristine compostable bags, the recovered BDP fragments showed differences in their material properties, which potentially renders them less prone to further biodegradation. BDP fragments < 1 mm were extracted in bulk and came up to 0.43 wt% of compost dry weight. Finally, the liquid fertilizer produced during the anaerobic treatment contained several thousand BDP fragments < 500 µm per liter. Hence, our study questions, if currently available BDP are compatible with applications in areas of environmental relevance, such as fertilizer production.


Asunto(s)
Plásticos Biodegradables , Compostaje , Agricultura , Biodegradación Ambiental , Fertilizantes
15.
Sci Total Environ ; 836: 155141, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405226

RESUMEN

Rivers are major pathways for the transport of microplastics towards the oceans, and many studies focus on microplastic abundance in fluvial ecosystems. Although flooding strongly affects transport of microplastics, knowledge about the potential input via floodwaters, spatial distribution, and fate of microplastics in adjacent floodplains remains very limited. In this study, we suggest that local topography and flood frequency could influence the abundance of microplastics in floodplains. Based on this concept, we took soil samples in a Rhine River floodplain in two different depths (0-5 cm and 5-20 cm) along three transects with increasing distance to the river and analysed the abundance of microplastics via FTIR spectroscopy. Flood frequency of the transects was estimated by a combination of hydrodynamic modelling with MIKE 21 (DHI, Hørsholm Denmark) and analysis of time series of water levels. Microplastic abundance per kg dry soil varied between 25,502 to 51,119 particles in the top 5 cm and 25,616 to 84,824 particles in the deeper soil (5-20 cm). The results of our study indicate that local topography and resulting flooding patterns are responsible for the amount of microplastics found at the respective transect. Differences in soil properties, vegetation cover and signs of earthworm activity in the soil profile seem to be related to microplastic migration and accumulation in the deeper soil. The interdisciplinary approach we used in our work can be applied to other floodplains to elucidate the respective processes. This information is essentially important both for locating potential microplastic sinks for process-informed sampling designs and to identify areas of increased bioavailability of microplastics for proper ecological risk assessment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Inundaciones , Plásticos , Ríos , Suelo , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 833: 154824, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35351498

RESUMEN

In search of effective, fast, and cheap methods to purify environmental samples for microplastic analysis, scientific literature provides various purification protocols. However, while most of these protocols effectively purify the samples, some may also degrade the targeted polymers. This study was conducted to systematically compare the effects of purification protocols based on acidic, alkaline, oxidative, and enzymatic digestion and extraction via density separation on eight of the most relevant plastic types. It offers insights into how specific purification protocols may compromise microplastic detection by documenting visible and gravimetric effects, analyzing potential surface degradation using Fourier transform infrared spectroscopy (FTIR) and bulk erosion on a molecular level using gel permeation chromatography (GPC). For example, protocols using strong acids and high temperatures are likely to completely dissolve or cause strong degradation to a wide range of polymers (PA, PC, PET, PS, PUR & PVC), while strong alkaline solutions may damage PC and PET. Contrarily, Fenton's reagent, multiple enzymatic digestion steps, as well as treatment with a zinc chloride solution frequently used for density-separation, do not degrade the eight polymers tested here. Therefore, their implementation in microplastic sample processing may be considered an essential stepping-stone towards a standardized protocol for future microplastics analyses.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Technol Lett ; 9(1): 90-95, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036459

RESUMEN

The problem of automating the data analysis of microplastics following a spectroscopic measurement such as focal plane array (FPA)-based micro-Fourier transform infrared (FTIR), Raman, or QCL is gaining ever more attention. Ease of use of the analysis software, reduction of expert time, analysis speed, and accuracy of the result are key for making the overall process scalable and thus allowing nonresearch laboratories to offer microplastics analysis as a service. Over the recent years, the prevailing approach has been to use spectral library search to automatically identify spectra of the sample. Recent studies, however, showed that this approach is rather limited in certain contexts, which led to developments for making library searches more robust but on the other hand also paved the way for introducing more advanced machine learning approaches. This study describes a model-based machine learning approach based on random decision forests for the analysis of large FPA-µFTIR data sets of environmental samples. The model can distinguish between more than 20 different polymer types and is applicable to complex matrices. The performance of the model under these demanding circumstances is shown based on eight different data sets. Further, a Monte Carlo cross validation has been performed to compute error rates such as sensitivity, specificity, and precision.

18.
Histochem Cell Biol ; 157(2): 127-137, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34750664

RESUMEN

Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses in E. fetida, which can be applied to other model organisms as well.


Asunto(s)
Sistema Digestivo/citología , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Oligoquetos/citología , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier
19.
Environ Toxicol Chem ; 41(4): 844-857, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620097

RESUMEN

Microplastic pollution in soils is an emerging topic in the scientific community, with researchers striving to determine the occurrence and the impact of microplastics on soil health, ecology, and functionality. However, information on the microplastic contamination of soils is limited because of a lack of suitable analytical methods. Because micro-Fourier-transform infrared spectroscopy (µ-FTIR), next to Raman spectroscopy, is one of the few methods that allows the determination of the number, polymer type, shape, and size of microplastic particles, the present study addresses the challenge of purifying soil samples sufficiently to allow a subsequent µ-FTIR analysis. A combination of freeze-drying, sieving, density separation, and a sequential enzymatic-oxidative digestion protocol enables removal of the mineral mass (>99.9% dry wt) and an average reduction of 77% dry weight of the remaining organic fraction. In addition to visual integrity, attenuated total reflectance FTIR, gel permeation chromatography, and differential scanning calorimetry showed that polyamide, polyethylene, polyethylene terephthalate, and polyvinyl chloride in the size range of 100 to 400 µm were not affected by the approach. However, biodegradable polylactic acid showed visible signs of degradation and reduced molecular weight distribution after protease treatment. Nevertheless, the presented purification protocol is a reliable and robust method to purify relatively large soil samples of approximately 250 g dry weight for spectroscopic analysis in microplastic research and has been shown to recover various microplastic fibers and fragments down to a size of 10 µm from natural soil samples. Environ Toxicol Chem 2022;41:844-857. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Plásticos/análisis , Suelo , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 818: 151812, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808158

RESUMEN

Microplastic (MP) appears to be omnipresent in the atmosphere, raising concerns about dispersion across environmental compartments, ecological consequences and human health risks by inhalation. To date, data on the sources of atmospheric MP and deposition to river catchment areas are still sparse. We, therefore, took aerosol and total atmospheric deposition samples in the catchment area of the large German river Weser to estimate microplastic deposition fluxes (DFs) at six specific sites and airborne MP concentrations. Sampling in rural, suburban, and urban environments and wastewater treatment plants (WWTPs) was performed, aiming at a variation in airborne MP pollution and elucidating potential MP source areas. Aerosol samples were taken twice in April and October while monthly total deposition samples were collected over a period from March to October. Microplastics were detected in all analysed aerosol samples by Raman spectroscopy down to 4 µm, and in all 32 total deposition samples by µFT-IR down to 11 µm. Average MP number concentrations of 91 ± 47 m-3 were found in aerosol samples. The measured total MP number DFs ranged between 10 and 367 N m-2 day-1 (99 ± 85 mean ± SD) corresponding to total deposition of 0.05 ± 0.1 kg ha-1 per year and to an estimated 232 metric tons of plastic being deposited in the Weser River catchment annually. MP number DFs were higher in urban than rural sites. An effect of WWTPs on the MP abundance in air was not observed. Polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polystyrene, and silicone fragments were found as the predominant polymer types in total deposition samples, while polyethylene particles dominated in aerosol samples. The results suggest that proximity to sources, especially to cities, increase the numbers of MP found in the atmosphere. It further indicates that atmospheric MP considerably contributes to the contamination of both aquatic and terrestrial habitats.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Plásticos , Polietileno/análisis , Ríos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...