Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861393

RESUMEN

The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.

2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366566

RESUMEN

Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.


Asunto(s)
Introgresión Genética , Smegmamorpha , Animales , Smegmamorpha/genética , Genoma , Genómica , Hibridación Genética
3.
Proc Natl Acad Sci U S A ; 120(49): e2310752120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019864

RESUMEN

The mechanisms generating novel genes and genetic information are poorly known, even for microRNA (miRNA) genes with an extremely constrained design. All miRNA primary transcripts need to fold into a stem-loop structure to yield short gene products ([Formula: see text]22 nt) that bind and repress their mRNA targets. While a substantial number of miRNA genes are ancient and highly conserved, short secondary structures coding for entirely novel miRNA genes have been shown to emerge in a lineage-specific manner. Template switching is a DNA-replication-related mutation mechanism that can introduce complex changes and generate perfect base pairing for entire hairpin structures in a single event. Here, we show that the template-switching mutations (TSMs) have participated in the emergence of over 6,000 suitable hairpin structures in the primate lineage to yield at least 18 new human miRNA genes, that is 26% of the miRNAs inferred to have arisen since the origin of primates. While the mechanism appears random, the TSM-generated miRNAs are enriched in introns where they can be expressed with their host genes. The high frequency of TSM events provides raw material for evolution. Being orders of magnitude faster than other mechanisms proposed for de novo creation of genes, TSM-generated miRNAs enable near-instant rewiring of genetic information and rapid adaptation to changing environments.


Asunto(s)
MicroARNs , Animales , Humanos , MicroARNs/metabolismo , Primates/genética , Intrones , Replicación del ADN/genética
4.
Mol Ecol ; 32(22): 5932-5943, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37855154

RESUMEN

The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.


Asunto(s)
Phocidae , Animales , Phocidae/genética , Canadá , Mamíferos , Regiones Árticas , Groenlandia
5.
STAR Protoc ; 4(4): 102567, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37740912

RESUMEN

This protocol demonstrates how a fragmented reference genome and low-coverage sequencing data can be efficiently utilized for population genetic analyses of a species with highly reduced genetic diversity. Focusing on endangered Saimaa ringed seals, we detail the steps for data preparation and conventional analyses and then extend the latter by combining genomic and geospatial data. In addition, we introduce coancestry as a measure of genetic identity and describe accessible tools for the quantification of across-genome variation in genetic diversity. For complete details on the use and execution of this protocol, please refer to Löytynoja et al. (2023).1.


Asunto(s)
Phocidae , Animales , Phocidae/genética , Genoma/genética , Genómica/métodos , Variación Genética/genética
6.
Curr Biol ; 33(6): 1009-1018.e7, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36822202

RESUMEN

In the face of the human-caused biodiversity crisis, understanding the theoretical basis of conservation efforts of endangered species and populations has become increasingly important. According to population genetics theory, population subdivision helps organisms retain genetic diversity, crucial for adaptation in a changing environment. Habitat topography is thought to be important for generating and maintaining population subdivision, but empirical cases are needed to test this assumption. We studied Saimaa ringed seals, landlocked in a labyrinthine lake and recovering from a drastic bottleneck, with additional samples from three other ringed seal subspecies. Using whole-genome sequences of 145 seals, we analyzed the distribution of variation and genetic relatedness among the individuals in relation to the habitat shape. Despite a severe history of genetic bottlenecks with prevalent homozygosity in Saimaa ringed seals, we found evidence for the population structure mirroring the subregions of the lake. Our genome-wide analyses showed that the subpopulations had retained unique variation and largely complementary patterns of homozygosity, highlighting the significance of habitat connectivity in conservation biology and the power of genomic tools in understanding its impact. The central role of the population substructure in preserving genetic diversity at the metapopulation level was confirmed by simulations. Integration of genetic analyses in conservation decisions gives hope to Saimaa ringed seals and other endangered species in fragmented habitats.


Asunto(s)
Caniformia , Phocidae , Animales , Humanos , Estudio de Asociación del Genoma Completo , Genética de Población , Ecosistema , Phocidae/genética , Especies en Peligro de Extinción , Caniformia/genética , Variación Genética
7.
Heredity (Edinb) ; 130(3): 114-121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566319

RESUMEN

Map distance is one of the key measures in genetics and indicates the expected number of crossovers between two loci. Map distance is estimated from the observed recombination frequency using mapping functions, the most widely used of those, Haldane and Kosambi, being developed at the time when the number of markers was low and unobserved crossovers had a substantial effect on the recombination fractions. In contemporary high-density marker data, the probability of multiple crossovers between adjacent loci is negligible and different mapping functions yield the same result, that is, the recombination frequency between adjacent loci is equal to the map distance in Morgans. However, high-density linkage maps contain an interpretation problem: the map distance over a long interval is additive and its association with recombination frequency is not defined. Here, we demonstrate with high-density linkage maps from humans and stickleback fishes that the inverses of Haldane's and Kosambi's mapping functions systematically underpredict recombination frequencies from map distance. To remedy this, we formulate a piecewise function that yields more accurate predictions of recombination frequency from map distance. Our results demonstrate that the association between map distance and recombination frequency is context-dependent and without a universal solution.


Asunto(s)
Recombinación Genética , Humanos , Mapeo Cromosómico/métodos , Probabilidad , Ligamiento Genético
8.
Mol Ecol ; 31(20): 5386-5401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962788

RESUMEN

Introgressive hybridization is an important process in evolution but challenging to identify, undermining the efforts to understand its role and significance. On the contrary, many analytical methods assume direct descent from a single common ancestor, and admixture among populations can violate their assumptions and lead to seriously biased results. A detailed analysis of 888 whole-genome sequences of nine-spined sticklebacks (Pungitius pungitius) revealed a complex pattern of population ancestry involving multiple waves of gene flow and introgression across northern Europe. The two recognized lineages were found to have drastically different histories, and their secondary contact zone was wider than anticipated, displaying a smooth gradient of foreign ancestry with some curious deviations from the expected pattern. Interestingly, the freshwater isolates provided peeks into the past and helped to understand the intermediate states of evolutionary processes. Our analyses and findings paint a detailed picture of the complex colonization history of northern Europe and provide backdrop against which introgression and its role in evolution can be investigated. However, they also expose the challenges in analyses of admixed populations and demonstrate how hidden admixture and colonization history misleads the estimation of admixture proportions and population split times.


Asunto(s)
Smegmamorpha , Animales , Europa (Continente) , Agua Dulce , Flujo Génico/genética , Genética de Población , Genoma , Smegmamorpha/genética
9.
Genome Res ; 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760560

RESUMEN

Variation within human genomes is unevenly distributed, and variants show spatial clustering. DNA-replication-related template switching is a poorly known mutational mechanism capable of causing major chromosomal rearrangements as well as creating short inverted sequence copies that appear as local mutation clusters in sequence comparisons. I reanalyzed haplotype-resolved genome assemblies representing 25 human populations and multinucleotide variants aggregated from 140,000 human sequencing experiments. Local template switching could explain thousands of complex mutation clusters across the human genome, the loci segregating within and between populations. I developed computational tools for identification of template switch events using both short-read sequencing data and genotype data, and for genotyping candidate loci using short-read data. The characteristics of template-switch mutations complicate their detection, and widely used analysis pipelines for short-read sequencing data, normally capable of identifying single nucleotide changes, were found to miss template-switch mutations of tens of base pairs, potentially invalidating medical genetic studies searching for a causative allele behind genetic diseases. Combined with the massive sequencing data now available for humans, the novel tools described here enable building catalogs of affected loci and studying the cellular mechanisms behind template switching in both healthy organisms and disease.

10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046021

RESUMEN

The evolutionary origin of RNA stem structures and the preservation of their base pairing under a spontaneous and random mutation process have puzzled theoretical evolutionary biologists. DNA replication-related template switching is a mutation mechanism that creates reverse-complement copies of sequence regions within a genome by replicating briefly along either the complementary or nascent DNA strand. Depending on the relative positions and context of the four switch points, this process may produce a reverse-complement repeat capable of forming the stem of a perfect DNA hairpin or fix the base pairing of an existing stem. Template switching is typically thought to trigger large structural changes, and its possible role in the origin and evolution of RNA genes has not been studied. Here, we show that the reconstructed ancestral histories of RNA genes contain mutation patterns consistent with the DNA replication-related template switching. In addition to multibase compensatory mutations, the mechanism can explain complex sequence changes, although mutations breaking the structure rarely get fixed in evolution. Our results suggest a solution for the long-standing dilemma of RNA gene evolution and demonstrate how template switching can both create perfect stems with a single mutation event and help maintaining the stem structure over time. Interestingly, template switching also provides an elegant explanation for the asymmetric base pair frequencies within RNA stems.


Asunto(s)
Replicación del ADN , ADN/química , ADN/genética , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , ARN/química , Moldes Genéticos , Emparejamiento Base , Secuencia de Bases , Mutación , ARN/genética
11.
Mol Ecol Resour ; 21(6): 2166-2176, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33955177

RESUMEN

We describe an integrative approach to improve contiguity and haploidy of a reference genome assembly and demonstrate its impact with practical examples. With two novel features of Lep-Anchor software and a combination of dense linkage maps, overlap detection and bridging long reads, we generated an improved assembly of the nine-spined stickleback (Pungitius pungitius) reference genome. We were able to remove a significant number of haplotypic contigs, detect more genetic variation and improve the contiguity of the genome, especially that of X chromosome. However, improved scaffolding cannot correct for mosaicism of erroneously assembled contigs, demonstrated by a de novo assembly of a 1.6-Mbp inversion. Qualitatively similar gains were obtained with the genome of three-spined stickleback (Gasterosteus aculeatus). Since the utility of genome-wide sequencing data in biological research depends heavily on the quality of the reference genome, the improved and fully automated approach described here should be helpful in refining reference genome assemblies.


Asunto(s)
Genoma , Smegmamorpha , Animales , Mapeo Cromosómico , Smegmamorpha/genética , Programas Informáticos
12.
Mol Ecol ; 30(9): 1946-1961, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33464655

RESUMEN

Repeated and independent adaptation to specific environmental conditions from standing genetic variation is common. However, if genetic variation is limited, the evolution of similar locally adapted traits may be restricted to genetically different and potentially less optimal solutions or prevented from happening altogether. Using a quantitative trait locus (QTL) mapping approach, we identified the genomic regions responsible for the repeated pelvic reduction (PR) in three crosses between nine-spined stickleback populations expressing full and reduced pelvic structures. In one cross, PR mapped to linkage group 7 (LG7) containing the gene Pitx1, known to control pelvic reduction also in the three-spined stickleback. In the two other crosses, PR was polygenic and attributed to 10 novel QTL, of which 90% were unique to specific crosses. When screening the genomes from 27 different populations for deletions in the Pitx1 regulatory element, these were only found in the population in which PR mapped to LG7, even though the morphological data indicated large-effect QTL for PR in several other populations as well. Consistent with the available theory and simulations parameterized on empirical data, we hypothesize that the observed variability in genetic architecture of PR is due to heterogeneity in the spatial distribution of standing genetic variation caused by >2× stronger population structuring among freshwater populations and >10× stronger genetic isolation by distance in the sea in nine-spined sticklebacks as compared to three-spined sticklebacks.


Asunto(s)
Smegmamorpha , Animales , Mapeo Cromosómico , Ligamiento Genético , Genética de Población , Genoma , Smegmamorpha/genética
13.
Methods Mol Biol ; 2231: 17-37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33289884

RESUMEN

Evolutionary analyses require sequence alignments that correctly represent evolutionary homology. Evolutionary homology and proteins' structural similarity are not the same and sequence alignments generated with methods designed for structural matching can be seriously misleading in comparative and phylogenetic analyses. The phylogeny-aware alignment algorithm implemented in the program PRANK has been shown to produce good alignments for evolutionary inferences. Unlike other alignment programs, PRANK makes use of phylogenetic information to distinguish alignment gaps caused by insertions or deletions and, thereafter, handles the two types of events differently. As a by-product of the correct handling of insertions and deletions, PRANK can provide the inferred ancestral sequences as a part of the output and mark the alignment gaps differently depending on their origin in insertion or deletion events. As the algorithm infers the evolutionary history of the sequences, PRANK can be sensitive to errors in the guide phylogeny and violations on the underlying assumptions about the origin and patterns of gaps. To mitigate the effects of such model violations, the phylogeny-aware alignment algorithm has been re-implemented in program PAGAN. By using sequence graphs, PAGAN can model and accumulate evidence from more complex gap structures than PRANK does, and incorporate this uncertainty in the inferred ancestral sequences. These issues are discussed in detail below and practical advice is provided for the use of PRANK and PAGAN in evolutionary analysis. The two software packages can be downloaded from http://wasabiapp.org/software .


Asunto(s)
Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Secuencia de Bases/genética , Evolución Molecular , Mutagénesis Insercional/genética , Filogenia , Reproducibilidad de los Resultados , Eliminación de Secuencia/genética
14.
Methods Mol Biol ; 2231: 225-240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33289896

RESUMEN

Wasabi is an open-source, web-based graphical environment for evolutionary sequence analysis and visualization, designed to work with multiple sequence alignments within their phylogenetic context. Its interactive user interface provides convenient access to external data sources and computational tools and is easily extendable with custom tools and pipelines using a plugin system. Wasabi stores intermediate editing and analysis steps as workflow histories and provides direct-access web links to datasets, allowing for reproducible, collaborative research, and easy dissemination of the results. In addition to shared analyses and installation-free usage, the web-based design allows Wasabi to be run as a cross-platform, stand-alone application and makes its integration to other web services straightforward.This chapter gives a detailed description and guidelines for the use of Wasabi's analysis environment. Example use cases will give step-by-step instructions for practical application of the public Wasabi, from quick data visualization to branched analysis pipelines and publishing of results. We end with a brief discussion of advanced usage of Wasabi, including command-line communication, interface extension, offline usage, and integration to local and public web services. The public Wasabi application, its source code, documentation, and other materials are available at http://wasabiapp.org.


Asunto(s)
Biología Computacional/métodos , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Evolución Molecular , Internet , Filogenia , Análisis de Secuencia/métodos , Interfaz Usuario-Computador , Flujo de Trabajo
15.
Nat Plants ; 6(7): 766-772, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601420

RESUMEN

Conditional manipulation of gene expression is a key approach to investigating the primary function of a gene in a biological process. While conditional and cell-type-specific overexpression systems exist for plants, there are currently no systems available to disable a gene completely and conditionally. Here, we present a new tool with which target genes can efficiently and conditionally be knocked out by genome editing at any developmental stage. Target genes can also be knocked out in a cell-type-specific manner. Our tool is easy to construct and will be particularly useful for studying genes having null alleles that are non-viable or show pleiotropic developmental defects.


Asunto(s)
Edición Génica/métodos , Plantas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Inactivación de Genes , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética
16.
R Soc Open Sci ; 6(11): 190666, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31827824

RESUMEN

Comparative studies of quantitative and neutral genetic differentiation (Q ST-F ST tests) provide means to detect adaptive population differentiation. However, Q ST-F ST tests can be overly liberal if the markers used deflate F ST below its expectation, or overly conservative if methodological biases lead to inflated F ST estimates. We investigated how marker type and filtering criteria for marker selection influence Q ST-F ST comparisons through their effects on F ST using simulations and empirical data on over 18 000 in silico genotyped microsatellites and 3.8 million single-locus polymorphism (SNP) loci from four populations of nine-spined sticklebacks (Pungitius pungitius). Empirical and simulated data revealed that F ST decreased with increasing marker variability, and was generally higher with SNPs than with microsatellites. The estimated baseline F ST levels were also sensitive to filtering criteria for SNPs: both minor alleles and linkage disequilibrium (LD) pruning influenced F ST estimation, as did marker ascertainment. However, in the case of stickleback data used here where Q ST is high, the choice of marker type, their genomic location, ascertainment and filtering made little difference to outcomes of Q ST-F ST tests. Nevertheless, we recommend that Q ST-F ST tests using microsatellites should discard the most variable loci, and those using SNPs should pay attention to marker ascertainment and properly account for LD before filtering SNPs. This may be especially important when level of quantitative trait differentiation is low and levels of neutral differentiation high.

17.
Genome Biol Evol ; 11(11): 3291-3308, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31687752

RESUMEN

The Gasterosteidae fish family hosts several species that are important models for eco-evolutionary, genetic, and genomic research. In particular, a wealth of genetic and genomic data has been generated for the three-spined stickleback (Gasterosteus aculeatus), the "ecology's supermodel," whereas the genomic resources for the nine-spined stickleback (Pungitius pungitius) have remained relatively scarce. Here, we report a high-quality chromosome-level genome assembly of P. pungitius consisting of 5,303 contigs (N50 = 1.2 Mbp) with a total size of 521 Mbp. These contigs were mapped to 21 linkage groups using a high-density linkage map, yielding a final assembly with 98.5% BUSCO completeness. A total of 25,062 protein-coding genes were annotated, and about 23% of the assembly was found to consist of repetitive elements. A comprehensive analysis of repetitive elements uncovered centromere-specific tandem repeats and provided insights into the evolution of retrotransposons. A multigene phylogenetic analysis inferred a divergence time of about 26 million years ago (Ma) between nine- and three-spined sticklebacks, which is far older than the commonly assumed estimate of 13 Ma. Compared with the three-spined stickleback, we identified an additional duplication of several genes in the hemoglobin cluster. Sequencing data from populations adapted to different environments indicated potential copy number variations in hemoglobin genes. Furthermore, genome-wide synteny comparisons between three- and nine-spined sticklebacks identified chromosomal rearrangements underlying the karyotypic differences between the two species. The high-quality chromosome-scale assembly of the nine-spined stickleback genome obtained with long-read sequencing technology provides a crucial resource for comparative and population genomic investigations of stickleback fishes and teleosts.


Asunto(s)
Genoma , Perciformes/genética , Animales , Elementos Transponibles de ADN , Evolución Molecular , Femenino , Proteínas de Peces/genética , Hemoglobinas/genética , Masculino , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Perciformes/clasificación , Filogenia , Recombinación Genética
18.
Commun Biol ; 2: 56, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775457

RESUMEN

Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.


Asunto(s)
Proteínas de Unión al ADN/genética , Embryophyta/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/metabolismo , Embryophyta/clasificación , Embryophyta/metabolismo , Dosificación de Gen , Duplicación de Gen , Ontología de Genes , Flujo Genético , Péptidos y Proteínas de Señalización Intracelular/clasificación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Anotación de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
19.
R Soc Open Sci ; 5(11): 180903, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30564397

RESUMEN

An increasing number of mammalian species have been shown to have a history of hybridization and introgression based on genetic analyses. Only relatively few fossils, however, preserve genetic material, and morphology must be used to identify the species and determine whether morphologically intermediate fossils could represent hybrids. Because dental and cranial fossils are typically the key body parts studied in mammalian palaeontology, here we bracket the potential for phenotypically extreme hybridizations by examining uniquely preserved cranio-dental material of a captive hybrid between grey and ringed seals. We analysed how distinct these species are genetically and morphologically, how easy it is to identify the hybrids using morphology and whether comparable hybridizations happen in the wild. We show that the genetic distance between these species is more than twice the modern human-Neanderthal distance, but still within that of morphologically similar species pairs known to hybridize. By contrast, morphological and developmental analyses show grey and ringed seals to be highly disparate, and that the hybrid is a predictable intermediate. Genetic analyses of the parent populations reveal introgression in the wild, suggesting that grey-ringed seal hybridization is not limited to captivity. Taken together, we postulate that there is considerable potential for mammalian hybridization between phenotypically disparate taxa.

20.
Genome Res ; 27(6): 1039-1049, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28385709

RESUMEN

Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution.


Asunto(s)
Genoma Humano , Mutación INDEL , Secuencias Invertidas Repetidas , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Animales , Secuencia de Bases , Evolución Biológica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pan troglodytes , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...