Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metab Eng Commun ; 18: e00241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39021639

RESUMEN

The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.

2.
Microorganisms ; 11(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894250

RESUMEN

The scarcely investigated myxobacterium Corallococcus coralloides holds a large genome containing many uncharacterized biosynthetic gene clusters (BGCs) that potentially encode the synthesis of entirely new natural products. Despite its promising genomic potential, suitable cultivation conditions have not yet been found to activate the synthesis of new secondary metabolites (SMs). Finding the right cultivation conditions to activate BGCs in the genome remains a major bottleneck, and its full biosynthetic potential has so far not been determined. We therefore applied a bivariate "one strain many compounds" (OSMAC) approach, using a combination of two elicitor changes at once, for the activation of BGCs and concomitant SM production by C. coralloides. The screening was carried out in Duetz-System 24-well plates, applying univariate and bivariate OSMAC conditions. We combined biotic additives and organic solvents with a complex growth medium for univariate conditions and with minimal medium for bivariate conditions. The success in the activation of BGCs was evaluated by determining the number of new mass features detected in the respective extracts. We found synergistic effects in the bivariate OSMAC designs, evidenced by the detection of completely new mass features in the bivariate OSMAC experiments, which were not detected in the univariate OSMAC designs with only one elicitor. Overall, the bivariate OSMAC screening led to 55 new mass features, which were not detected in the univariate OSMAC design. Molecular networks revealed that these new mass features embody potential novel natural compounds and chemical derivatives like the N-acyl fatty amine N-pentyloctadecanamide and possibly sulfur-containing natural products. Hence, the presence of multiple elicitors in the bivariate OSMAC designs successfully activated the biosynthetic potential in C. coralloides. We propose bivariate OSMAC designs with a complex combination of elicitors as a straightforward strategy to robustly expand the SM space of microorganisms with large genomes.

3.
Biotechnol Prog ; 39(6): e3373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408088

RESUMEN

Cell-free protein synthesis (CFPS) systems are an attractive method to complement the usual cell-based synthesis of proteins, especially for screening approaches. The literature describes a wide variety of CFPS systems, but their performance is difficult to compare since the reaction components are often used at different concentrations. Therefore, we have developed a calculation tool based on amino acid balancing to evaluate the performance of CFPS by determining the fractional yield as the ratio between theoretically achievable and experimentally achieved protein molar concentration. This tool was applied to a series of experiments from our lab and to various systems described in the literature to identify systems that synthesize proteins very efficiently and those that still have potential for higher yields. The well-established Escherichia coli system showed a high efficiency in the utilization of amino acids, but interestingly, less considered systems, such as those based on Vibrio natriegens or Leishmania tarentolae, also showed exceptional fractional yields of over 70% and 90%, respectively, implying very efficient conversions of amino acids. The methods and tools described here can quickly identify when a system has reached its maximum or has limitations. We believe that this approach will facilitate the evaluation and optimization of existing CFPS systems and provides the basis for the systematic development of new CFPS systems.


Asunto(s)
Aminoácidos , Biosíntesis de Proteínas , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/metabolismo , Sistema Libre de Células/metabolismo
4.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770729

RESUMEN

The natural product aurachin D is a farnesylated quinolone alkaloid, which is known to possess activity against the causative agent of malaria, Plasmodium spp. In this study, we show that aurachin D inhibits other parasitic protozoa as well. While aurachin D had only a modest effect on Trypanosoma brucei rhodesiense, two other trypanosomatids, T. cruzi and Leishmania donovani, were killed at low micromolar and nanomolar concentrations, respectively, in an in vitro assay. The determined IC50 values of aurachin D were even lower than those of the reference drugs benznidazole and miltefosine. Due to these promising results, we set out to explore the impact of structural modifications on the bioactivity of this natural product. In order to generate aurachin D derivatives with varying substituents at the C-2, C-6 and C-7 position of the quinolone ring system, we resorted to whole-cell biotransformation using a recombinant Escherichia coli strain capable of aurachin-type prenylations. Quinolone precursor molecules featuring methyl, methoxy and halogen groups were fed to this E. coli strain, which converted the substrates into the desired analogs. None of the generated derivatives exhibited improved antiprotozoal properties in comparison to aurachin D. Obviously, the naturally occurring aurachin D features already a privileged structure, especially for the inhibition of the causative agent of visceral leishmaniasis.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Enfermedad de Chagas , Leishmania donovani , Quinolonas , Trypanosoma cruzi , Humanos , Escherichia coli , Antiprotozoarios/farmacología , Antiprotozoarios/química , Biotransformación , Quinolonas/farmacología , Productos Biológicos/farmacología , Plasmodium falciparum , Pruebas de Sensibilidad Parasitaria
5.
ChemSusChem ; 16(5): e202201629, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36416867

RESUMEN

Life cycle assessments (LCAs) can provide insights into the environmental impact of production processes. In this study, a comparative LCA was performed for the synthesis of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) in an early development stage. The cyclic dinucleotide (CDN) is of interest for pharmaceutical applications such as cancer immunotherapy. CDNs can be synthesized either by enzymes or chemical catalysis. It is not known which of the routes is more sustainable as both routes have their advantages and disadvantages, such as a poor yield for the chemical synthesis and low titers for the biocatalytic synthesis. The synthesis routes were compared for the production of 200 g 2'3'-cGAMP based on laboratory data to assess the environmental impacts. The biocatalytic synthesis turned out to be superior to the chemical synthesis in all considered categories by at least one magnitude, for example, a global warming potential of 3055.6 kg CO2 equiv. for the enzymatic route and 56454.0 kg CO2 equiv. for the chemical synthesis, which is 18 times higher. This study demonstrates the value of assessment at an early development stage, when the choice between different routes is still possible.


Asunto(s)
Dióxido de Carbono , Nucleótidos Cíclicos , Animales , Nucleótidos Cíclicos/metabolismo , Biocatálisis , Estadios del Ciclo de Vida
6.
Metab Eng Commun ; 15: e00205, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36119807

RESUMEN

Microbial synthesis of monolignols and lignans from simple substrates is a promising alternative to plant extraction. Bottlenecks and byproduct formation during heterologous production require targeted metabolomics tools for pathway optimization. In contrast to available fractional methods, we established a comprehensive targeted metabolomics method. It enables the quantification of 17 extra- and intracellular metabolites of the monolignol and lignan pathway, ranging from amino acids to pluviatolide. Several cell disruption methods were compared. Hot water extraction was best suited regarding monolignol and lignan stability as well as extraction efficacy. The method was applied to compare enzymes for alleviating bottlenecks during heterologous monolignol and lignan production in E. coli. Variants of tyrosine ammonia-lyase had a considerable influence on titers of subsequent metabolites. The choice of multicopper oxidase greatly affected the accumulation of lignans. Metabolite titers were monitored during batch fermentation of either monolignol or lignan-producing recombinant E. coli strains, demonstrating the dynamic accumulation of metabolites. The new method enables efficient time-resolved targeted metabolomics of monolignol- and lignan-producing E. coli. It facilitates bottleneck identification and byproduct quantification, making it a valuable tool for further pathway engineering studies. This method will benefit the bioprocess development of biotransformation or fermentation approaches for microbial lignan production.

7.
Angew Chem Int Ed Engl ; 61(39): e202208358, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36026546

RESUMEN

Thanks to advances in enzyme discovery and protein engineering combined with the development of enzymatic multistep reaction cascades, new efficient routes for drug synthesis have been created that are superior to chemical syntheses. This supports the goal of the chemical and pharmaceutical industries to move to more sustainable and environmentally friendly processes. Recently described outstanding examples include the biocatalytic cascade syntheses of the cyclic dinucleotide MK-1454, molnupiravir, and islatravir, as well as the efficient fixation of CO2 to make starch using an artificial enzyme cascade.


Asunto(s)
Dióxido de Carbono , Ingeniería de Proteínas , Biocatálisis , Enzimas/metabolismo , Almidón/metabolismo
8.
Biomedicines ; 10(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35625702

RESUMEN

Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.

9.
Chembiochem ; 23(15): e202200121, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35593146

RESUMEN

Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.


Asunto(s)
Electrones , NADH NADPH Oxidorreductasas , Compuestos Azo/química , Colorantes/química , NADH NADPH Oxidorreductasas/metabolismo , Nitrorreductasas
10.
Biotechnol Bioeng ; 119(3): 677-684, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953086

RESUMEN

Cyclic dinucleotides (CDNs) are widely used secondary signaling molecules in prokaryotic and eukaryotic cells. As strong agonists of the stimulator of interferon genes, they are of great interest for pharmaceutical applications. In particular, cyclic-GMP-AMP and related synthetic CDNs are promising candidates in preclinical work and even some in clinical phase 1 and 2 studies. The comparison of chemical and biocatalytic synthesis routes elucidated that biological CDN synthesis offers some advantages, such as shorter synthesis time, avoiding complex protective group chemistry, and the access to a new spectrum of CDNs. However, the synthesis of CDNs in preparative quantities is still a challenge, since the chemical synthesis of CDNs suffers from low yields and complex synthetic routes and the enzymatically catalyzed synthesis is limited by low product titers and process stability. We aim to review the latest discoveries and recent trends in chemical and biocatalytic synthesis of CDNs with a focus on the synthesis of a huge variety of CDN derivatives. We furthermore consider the most promising biotechnological processes for CDN production by evaluating key figures of the currently known processes.


Asunto(s)
GMP Cíclico , Unión Proteica
11.
Front Bioeng Biotechnol ; 9: 705630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307325

RESUMEN

In 2004, the fungal heme-thiolate enzyme subfamily of unspecific peroxygenases (UPOs) was first described in the basidiomycete Agrocybe aegerita. As UPOs naturally catalyze a broad range of oxidative transformations by using hydrogen peroxide as electron acceptor and thus possess a great application potential, they have been extensively studied in recent years. However, despite their versatility to catalyze challenging selective oxyfunctionalizations, the availability of UPOs for potential biotechnological applications is restricted. Particularly limiting are the identification of novel natural biocatalysts, their production, and the description of their properties. It is hence of great interest to further characterize the enzyme subfamily as well as to identify promising new candidates. Therefore, this review provides an overview of the state of the art in identification, expression, and screening approaches of fungal UPOs, challenges associated with current protein production and screening strategies, as well as potential solutions and opportunities.

12.
Bioorg Med Chem ; 42: 116241, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139548

RESUMEN

Cytochrome P450 monooxygenases (P450s) are the major contributor in the metabolism of xenobiotics, including therapeutic agents. Thus, P450s find broad application in the pharmaceutical industry to synthesize metabolites of new active pharmaceutical ingredients in order to evaluate toxicity and pharmacokinetics. As an alternative to human hepatic P450s, microbial P450s offer several advantages, such as an easier and more efficient heterologous expression as well as higher stability under process conditions. Recently, the wild-type strain Actinosynnema mirum has been reported to catalyze hydroxylation reactions with high activity on a broad range of substrates. In this study, one of these substrates, ritonavir, was used to analyze the transcriptional response of the wild-type strain. Analysis of the differential gene expression pattern allowed the assignment of genes potentially responsible for ritonavir conversion. Heterologous expression of these candidates and activity testing led to the identification of a novel P450 that efficiently converts ritonavir resembling the activity of the human CYP3A4.


Asunto(s)
Actinobacteria/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Humanos , Hidroxilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Biomolecules ; 11(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923845

RESUMEN

Multi-enzyme cascade reactions for the synthesis of complex products have gained importance in recent decades. Their advantages compared to single biotransformations include the possibility to synthesize complex molecules without purification of reaction intermediates, easier handling of unstable intermediates, and dealing with unfavorable thermodynamics by coupled equilibria. In this study, a four-enzyme cascade consisting of ScADK, AjPPK2, and SmPPK2 for ATP synthesis from adenosine coupled to the cyclic GMP-AMP synthase (cGAS) catalyzing cyclic GMP-AMP (2'3'-cGAMP) formation was successfully developed. The 2'3'-cGAMP synthesis rates were comparable to the maximal reaction rate achieved in single-step reactions. An iterative optimization of substrate, cofactor, and enzyme concentrations led to an overall yield of 0.08 mole 2'3'-cGAMP per mole adenosine, which is comparable to chemical synthesis. The established enzyme cascade enabled the synthesis of 2'3'-cGAMP from GTP and inexpensive adenosine as well as polyphosphate in a biocatalytic one-pot reaction, demonstrating the performance capabilities of multi-enzyme cascades for the synthesis of pharmaceutically relevant products.


Asunto(s)
Adenosina Quinasa/metabolismo , Proteínas Bacterianas/metabolismo , Nucleótidos Cíclicos/síntesis química , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acinetobacter/enzimología , Nucleótidos de Adenina/metabolismo , Biocatálisis , Biotecnología/métodos , Saccharomyces cerevisiae/enzimología , Sinorhizobium meliloti/enzimología
14.
Chembiochem ; 22(13): 2266-2274, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647186

RESUMEN

The active vitamin D metabolites 25-OH-D and 1α,25-(OH)2 -D play an essential role in controlling several cellular processes in the human body and are potentially effective in the treatment of several diseases, such as autoimmune diseases, cardiovascular diseases and cancer. The microbial synthesis of vitamin D2 (VD2 ) and vitamin D3 (VD3 ) metabolites has emerged as a suitable alternative to established complex chemical syntheses. In this study, a novel strain, Kutzneria albida, with the ability to form 25-OH-D2 and 25-OH-D3 was identified. To further improve the conversion of the poorly soluble substrates, several solubilizers were tested. 100-fold higher product concentrations of 25-OH-D3 and tenfold higher concentrations of 25-OH-D2 after addition of 5 % (w/v) 2-hydroxypropyl ß-cyclodextrin (2-HPßCD) were reached. Besides the single-hydroxylation products, the human double-hydroxylation products 1,25-(OH)2 -D2 and 1,25-(OH)2 -D3 and various other potential single- and double-hydroxylation products were detected. Thus, K. albida represents a promising strain for the biotechnological production of VD2 and VD3 metabolites.


Asunto(s)
Actinobacteria/metabolismo , Colecalciferol/metabolismo , Ergocalciferoles/metabolismo , Colecalciferol/química , Ergocalciferoles/química , Hidroxilación , Estructura Molecular
15.
Biomolecules ; 11(2)2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573182

RESUMEN

Over the past decade, the one strain many compounds (OSMAC) approach has been established for the activation of biosynthetic gene clusters (BGCs), which mainly encode the enzymes of secondary metabolite (SM) biosynthesis pathways. These BGCs were successfully activated by altering various culture conditions, such as aeration rate, temperature, and nutrient composition. Here, we determined the biosynthetic potential of 43 bacteria using the genome mining tool antiSMASH. Based on the number of BGCs, biological safety, availability of deposited cultures, and literature coverage, we selected five promising candidates: Bacillus amyloliquefaciens DSM7, Corallococcus coralloides DSM2259, Pyxidicoccus fallax HKI727, Rhodococcus jostii DSM44719, and Streptomyces griseochromogenes DSM40499. The bacteria were cultivated under a broad range of OSMAC conditions (nutrient-rich media, minimal media, nutrient-limited media, addition of organic solvents, addition of biotic additives, and type of culture vessel) to fully assess the biosynthetic potential. In particular, we investigated so far scarcely applied OSMAC conditions to enhance the diversity of SMs. We detected the four predicted compounds bacillibactin, desferrioxamine B, myxochelin A, and surfactin. In total, 590 novel mass features were detected in a broad range of investigated OSMAC conditions, which outnumber the predicted gene clusters for all investigated bacteria by far. Interestingly, we detected mass features of the bioactive compounds cyclo-(Tyr-Pro) and nocardamin in extracts of DSM7 and DSM2259. Both compounds were so far not reported for these strains, indicating that our broad OSMAC screening approach was successful. Remarkably, the infrequently applied OSMAC conditions in defined medium with and without nutrient limitation were demonstrated to be very effective for BGC activation and for SM discovery.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Bacillus amyloliquefaciens/genética , Medios de Cultivo , Minería de Datos , Deferoxamina/química , Genoma , Lisina/análogos & derivados , Lisina/química , Myxococcales/genética , Oligopéptidos/química , Rhodococcus/genética , Metabolismo Secundario/genética , Streptomyces/genética
16.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499126

RESUMEN

The importance of bioprocesses has increased in recent decades, as they are considered to be more sustainable than chemical processes in many cases. E factors can be used to assess the sustainability of processes. However, it is noticeable that the contribution of enzyme synthesis and purification is mostly neglected. We, therefore, determined the E factors for the production and purification of 10 g enzymes. The calculated complete E factor including required waste and water is 37,835 gwaste·genzyme-1. This result demonstrates that the contribution of enzyme production and purification should not be neglected for sustainability assessment of bioprocesses.


Asunto(s)
Enzimas/biosíntesis , Enzimas/aislamiento & purificación , Tecnología Química Verde/métodos , Biocatálisis , Bioingeniería , Reactores Biológicos , Ingeniería Química , Industria Farmacéutica , Ambiente , Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Residuos Industriales , Nucleotidiltransferasas/biosíntesis , Nucleotidiltransferasas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación
17.
Chembiochem ; 21(22): 3225-3228, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32633874

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that catalyzes the synthesis of the cyclic GMP-AMP dinucleotide 2'3'-cGAMP. 2'3'-cGAMP functions as inducer for the production of type I interferons. Derivatives of this important second messenger are highly valuable for pharmaceutical applications. However, the production of these analogues requires complex, multistep syntheses. Herein, human cGAS is shown to react with a series of unnatural nucleotides, thus leading to novel cyclic dinucleotides. Most substrate derivatives with modifications at the nucleobase, ribose, and the α-thio phosphate were accepted. These results demonstrate the catalytic promiscuity of human cGAS and its utility for the biocatalytic synthesis of cyclic dinucleotide derivatives.


Asunto(s)
Nucleótidos Cíclicos/biosíntesis , Nucleotidiltransferasas/metabolismo , Biocatálisis , Humanos , Conformación de Ácido Nucleico , Nucleótidos Cíclicos/química , Nucleotidiltransferasas/química
19.
Chimia (Aarau) ; 74(5): 368-377, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32482213

RESUMEN

Enzymes are versatile biocatalysts capable of performing selective reactions. The advantages of enzymes in comparison to classical chemistry including chemical catalysts are the generally milder process conditions and avoidance of harmful reactants. Their high selectivity and specificity are especially beneficial for the enzymatic synthesis of new products with potential applications in drug research. Therefore, in the past decades, the utilization of isolated enzymes or whole-cell biocatalysts has spread through a growing number of biotechnological industries. The applications comprise the production of chiral building blocks for the pharmaceutical and fine chemical industry, the enzymatic synthesis of drug metabolites for testing of toxicity, function, biological activity, degradation and the production of biocatalytically modified natural products, which all play a role in drug discovery. Especially Oreste Ghisalba's contributions, which paved the way for the industrial use of enzymes, will be considered in this review.


Asunto(s)
Descubrimiento de Drogas , Biocatálisis , Productos Biológicos , Biotecnología , Enzimas
20.
Molecules ; 25(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325737

RESUMEN

Monoterpenes, such as the cyclic terpene limonene, are valuable and important natural products widely used in food, cosmetics, household chemicals, and pharmaceutical applications. The biotechnological production of limonene with microorganisms may complement traditional plant extraction methods. For this purpose, the bioprocess needs to be stable and ought to show high titers and space-time yields. In this study, a limonene production process was developed with metabolically engineered Escherichia coli at the bioreactor scale. Therefore, fed-batch fermentations in minimal medium and in the presence of a non-toxic organic phase were carried out with E. coli BL21 (DE3) pJBEI-6410 harboring the optimized genes for the mevalonate pathway and the limonene synthase from Mentha spicata on a single plasmid. The feasibility of glycerol as the sole carbon source for cell growth and limonene synthesis was examined, and it was applied in an optimized fermentation setup. Titers on a gram-scale of up to 7.3 g·Lorg-1 (corresponding to 3.6 g·L-1 in the aqueous production phase) were achieved with industrially viable space-time yields of 0.15 g·L-1·h-1. These are the highest monoterpene concentrations obtained with a microorganism to date, and these findings provide the basis for the development of an economic and industrially relevant bioprocess.


Asunto(s)
Escherichia coli/metabolismo , Limoneno/metabolismo , Ingeniería Metabólica , Escherichia coli/genética , Fermentación , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas , Ácido Mevalónico/metabolismo , Monoterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...