Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pain ; : 104572, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768798

RESUMEN

Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of Avpr1a as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing two C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan (ZYM) instillation, a validated preclinical model for post-inflammatory IBS. Using whole genome sequencing, we identified a SNP differentiating the two strains in the 5' intergenic region upstream of Avpr1a, encoding the protein arginine-vasopressin receptor 1A (AVPR1A). We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the two BL/6 substrains did not differ across other gastrointestinal (GI) phenotypes (e.g., fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the AVPR1A agonist AVP, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH-susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for visceral hypersensitivity in a mouse model of irritable bowel syndrome. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.

2.
ACS Chem Neurosci ; 14(18): 3318-3334, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37676000

RESUMEN

G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.


Asunto(s)
Trastorno Autístico , Neoplasias Encefálicas , Humanos , Receptores Acoplados a Proteínas G , Transducción de Señal , Sistema Nervioso Central
3.
Spine (Phila Pa 1976) ; 48(11): E169-E176, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36940259

RESUMEN

STUDY DESIGN: Double-blinded, prospective laboratory animal study. OBJECTIVE: To examine whether intraoperative spinal cord stimulation (SCS) inhibits the development of spine surgery-induced hypersensitivity. SUMMARY OF BACKGROUND DATA: Managing postoperative pain after spine surgery is challenging, and as many as 40% of patients may develop failed back surgery syndrome. Although SCS has been shown to effectively reduce chronic pain symptoms, it is unknown whether intraoperative SCS can mitigate the development of central sensitization that causes postoperative pain hypersensitivity and potentially leads to failed back surgery syndrome after spine surgery. MATERIALS AND METHODS: Mice were randomly stratified into three experimental groups: (1) sham surgery, (2) laminectomy alone, and (3) laminectomy plus SCS. Secondary mechanical hypersensitivity was measured in hind paws using von Frey assay one day before and at predetermined times after surgery. In addition, we also performed a conflict avoidance test to capture the affective-motivational domain of pain at selected time points postlaminectomy. RESULTS: Mice that underwent unilateral T13 laminectomy developed mechanical hypersensitivity in both hind paws. Intraoperative SCS applied to the exposed side of the dorsal spinal cord significantly inhibited the development of hind paw mechanical hypersensitivity on the SCS-applied side. Sham surgery did not produce any obvious secondary mechanical hypersensitivity in the hind paws. CONCLUSIONS: These results demonstrate that spine surgery for unilateral laminectomy induces central sensitization that results in postoperative pain hypersensitivity. Intraoperative SCS after laminectomy may be able to mitigate the development of this hypersensitivity in appropriately selected cases.


Asunto(s)
Síndrome de Fracaso de la Cirugía Espinal Lumbar , Estimulación de la Médula Espinal , Ratones , Animales , Estimulación de la Médula Espinal/métodos , Dimensión del Dolor , Sensibilización del Sistema Nervioso Central , Síndrome de Fracaso de la Cirugía Espinal Lumbar/terapia , Estudios Prospectivos , Médula Espinal/cirugía , Dolor Postoperatorio/prevención & control
4.
Brain Behav Immun ; 107: 215-224, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273650

RESUMEN

Previously we developed a murine model in which postinjury stimulation of an injured area triggers a transition to a nociplastic pain state manifesting as persistent mechanical hypersensitivity outside of the previously injured area. This hypersensitivity was maintained by sex-specific mechanisms; specifically, activated spinal microglia maintained the hypersensitivity only in males. Here we investigated whether spinal microglia drive the transition from acute injury-induced pain to nociplastic pain in males, and if so, how they are activated by normally innocuous stimulation after peripheral injury. Using intraplantar capsaicin injection as an acute peripheral injury and vibration of the injured paw as postinjury stimulation, we found that inhibition of spinal microglia prevents the vibration-induced transition to a nociplastic pain state. The transition was mediated by the ATP-P2X4 pathway, but not BDNF-TrkB signaling. Intrathecally injected GABA receptor agonists after intraplantar capsaicin injection prevented the vibration-induced transition to a nociplastic pain state. Conversely, in the absence of intraplantar capsaicin injection, intrathecally injected GABA receptor antagonists allowed the vibration stimulation of a normal paw to trigger the transition to a spinal microglia-mediated nociplastic pain state only in males. At the spinal level, TNF-α, IL-1ß, and IL-6, but not prostaglandins, contributed to the maintenance of the nociplastic pain state in males. These results demonstrate that in males, the transition from acute injury-induced pain to nociplastic pain is driven by spinal microglia causing neuroinflammation and that peripheral injury-induced spinal GABAergic disinhibition is pivotal for normally innocuous stimulation to activate spinal microglia.


Asunto(s)
Hiperalgesia , Dolor , Animales , Masculino , Ratones , Glicoproteínas de Membrana , Microglía , Agonistas del GABA
5.
Pain ; 164(2): 402-412, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35975896

RESUMEN

ABSTRACT: Nociplastic pain conditions develop predominantly in women. We recently established a murine nociplastic pain model by applying postinjury thermal (40°C) stimulation to an injured (capsaicin-injected) area, triggering a transition to a nociplastic pain state manifesting as persistent mechanical hypersensitivity outside of the previously injured area. The nociplastic pain state was centrally maintained by spinal microglia in males but peripherally by ongoing afferent activity at the previously injured area in females. Here, we investigated whether gonadal hormones are critical for the development of this peripherally maintained nociplastic pain state in females. Although the transition to a nociplastic pain state still occurred in ovariectomized females, the pain state was maintained neither by ongoing afferent activity at the previously injured area nor by spinal microglia. Estradiol reconstitution a week before the injury plus postinjury stimulation, but not after the transition had already occurred, restored the development of peripherally maintained nociplastic mechanical hypersensitivity in ovariectomized females. G protein-coupled estrogen receptor antagonism during the transition phase mimicked ovariectomy in gonad-intact females, whereas the receptor antagonism after the transition gradually alleviated the nociplastic mechanical hypersensitivity. At the previously injured area, afferents responsive to allyl isothiocyanate (AITC), a TRPA1 agonist, contributed to the maintenance of nociplastic mechanical hypersensitivity in gonad-intact females. In ex vivo skin-nerve preparations, only AITC-responsive afferents from the nociplastic pain model in gonad-intact females showed ongoing activities greater than control. These results suggest that gonadal hormones are critical for peripherally maintained nociplastic pain state in females by sensitizing AITC-responsive afferents to be persistently active.


Asunto(s)
Nociceptores , Dolor , Masculino , Ratones , Femenino , Animales , Isotiocianatos , Hormonas Gonadales
6.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187732

RESUMEN

Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of Avpr1a as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing two C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan (ZYM) instillation, a validated preclinical model for post-inflammatory IBS. Using whole genome sequencing, we identified a SNP differentiating the two strains in the 5' intergenic region upstream of Avpr1a, encoding the protein arginine-vasopressin receptor 1A (AVPR1A). We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression differences and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the two BL/6 substrains did not differ across other gastrointestinal (GI) phenotypes (e.g., GI motility), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. Moreover, neurons of the enteric nervous system were hyperresponsive to the AVPR1A agonist AVP, suggesting a role for enteric neurons in the pathology underlying VH. These results parallel our findings that patients' colonic Avpr1a mRNA expression was higher in patients with higher pain ratings. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH-susceptibility as well as a potential therapeutic target specific to VH.

7.
Drug Metab Pharmacokinet ; 47: 100477, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36368298

RESUMEN

Although methadone is effective in the management of acute pain, the complexity of its absorption-distribution-metabolism-excretion profile limits its use as an opioid of choice for perioperative analgesia. Because deuteration is known to improve the pharmacokinetic, pharmacodynamic and toxicological properties of some drugs, here we characterized the single dose pharmacokinetic properties and post-operative analgesic efficacy of d9-methadone. The pharmacokinetic profiles of d9-methadone and methadone administered intravenously to CD-1 male mice revealed that deuteration leads to a 5.7- and 4.4-fold increase in the area under the time-concentration curve and maximum concentration in plasma, respectively, as well as reduction in clearance (0.9 ± 0.3 L/h/kg vs 4.7 ± 0.8 L/h/kg). The lower brain-to-plasma ratio of d9-methadone compared to that of methadone (0.35 ± 0.12 vs 2.05 ± 0.62) suggested that deuteration decreases the transfer of the drug across the blood-brain barrier. The estimated LD50 value for a single intravenous dose of d9-methadone was 2.1-fold higher than that for methadone. Moreover, d9-methadone outperformed methadone in the efficacy against postoperative pain by primarily activating peripheral opioid receptors. Collectively, these data suggest that the replacement of three hydrogen atoms in three methyl groups of methadone altered its pharmacokinetic properties, improved safety, and enhanced its analgesic efficacy.


Asunto(s)
Analgésicos Opioides , Metadona , Masculino , Animales , Ratones , Metadona/farmacología , Metadona/uso terapéutico , Analgésicos Opioides/farmacología , Barrera Hematoencefálica , Cinética , Encéfalo
8.
Pain ; 163(3): 461-473, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34285154

RESUMEN

ABSTRACT: Acute injury-induced pain can transition to chronic nociplastic pain, which predominantly affects women. To facilitate studies on the underlying mechanisms of nociplastic pain, we developed a mouse model in which postinjury thermal stimulation (intermittent 40°C water immersion for 10 minutes at 2 hours postcapsaicin) prolongs capsaicin (ie, experimental injury)-induced transient mechanical hypersensitivity outside of the injury area. Although capsaicin injection alone induced mechanical and thermal hypersensitivity that resolved in ∼7 days (slower recovery in females), the postinjury stimulation prolonged capsaicin-induced mechanical, but not thermal, hypersensitivity up to 3 weeks in both sexes. When postinjury stimulation was given at a lower intensity (30°C) or at later time points (40°C at 1-3 days postcapsaicin), chronification of mechanical hypersensitivity occurred only in females. Similar chronification could be induced by a different postinjury stimulation modality (vibration of paw) or with a different injury model (plantar incision). Notably, the 40°C postinjury stimulation did not prolong capsaicin-induced inflammation in the hind paw, indicating that the prolonged mechanical hypersensitivity in these mice arises without clear evidence of ongoing injury, reflecting nociplastic pain. Although morphine and gabapentin effectively alleviated this persistent mechanical hypersensitivity in both sexes, sexually dimorphic mechanisms mediated the hypersensitivity. Specifically, ongoing afferent activity at the previously capsaicin-injected area was critical in females, whereas activated spinal microglia were crucial in males. These results demonstrate that postinjury stimulation of the injured area can trigger the transition from transient pain to nociplastic pain more readily in females, and sex-dependent mechanisms maintain the nociplastic pain state.


Asunto(s)
Dolor Crónico , Hiperalgesia , Animales , Capsaicina/farmacología , Femenino , Humanos , Hiperalgesia/etiología , Masculino , Ratones , Morfina , Dimensión del Dolor
9.
Front Synaptic Neurosci ; 13: 748929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867259

RESUMEN

Opioids are widely used for pain relief; however, chronic opioid use causes a paradoxical state of enhanced pain sensitivity, termed "Opioid-induced hyperalgesia (OIH)." Despite the clinical importance of OIH, the detailed mechanism by which it enhances pain sensitivity remains unclear. In this study, we tested whether repeated morphine induces a neuronal circuit polarization in the mouse spinal dorsal horn (SDH). Transgenic mice expressing GFP to neurokinin 1 receptor-expressing neurons (sNK1Rn) and GABAergic interneurons (sGABAn) that received morphine [20 mg/kg, once daily for four consecutive days (i.p.)] developed mechanical hypersensitivity. Repeated morphine altered synaptic strengths in the SDH as a specific cell-type but not in a gender-dependent manner. In sNK1Rn and non-tonic firing neurons, repeated morphine treatment significantly increased frequency of spontaneous excitatory postsynaptic current (sEPSC) and evoked EPSC (eEPSC). In addition, repeated morphine treatment significantly decreased evoked inhibitory postsynaptic current (eIPSC) in sNK1Rn. Conversely, in sGABAn and tonic firing neurons, repeated morphine treatment significantly decreased sEPSC frequency and eEPSC, but had no change of eIPSC in sGABAn. Interestingly, repeated morphine treatment significantly decreased neuronal rheobase of sNK1Rn but had no effect on sGABAn. These findings suggest that spinal neuronal circuit polarization maybe the mechanism of OIH and identify a potential therapeutic mechanism to prevent or treat opioid-induced pain.

10.
Neuroscience ; 428: 132-139, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31917342

RESUMEN

Since 1967, spinal cord stimulation (SCS) has been used to manage chronic intractable pain of the trunk and limbs. Compared to traditional high-intensity, low-frequency (<100 Hz) SCS that is thought to produce paresthesia and pain relief by stimulating large myelinated fibers in the dorsal column (DC), low-intensity, high-frequency (10 kHz) SCS has demonstrated long-term pain relief without generation of paresthesia. To understand this paresthesia-free analgesic mechanism of 10 kHz SCS, we examined whether 10 kHz SCS at intensities below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using in vivo and ex vivo electrophysiological approaches, we found that low-intensity (sub-sensory threshold) 10 kHz SCS, but not 1 kHz or 5 kHz SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Células del Asta Posterior/fisiología , Médula Espinal/fisiología , Animales , Masculino , Manejo del Dolor/métodos , Dimensión del Dolor/métodos , Ratas Sprague-Dawley , Estimulación de la Médula Espinal/métodos
11.
Nat Commun ; 10(1): 5677, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831806

RESUMEN

An important goal of the Zika virus (ZIKV) vaccine is to prevent a congenital syndrome in fetuses of pregnant women, but studies directly evaluating maternal vaccination for ZIKV are lacking. Here we report maternal vaccination using a live-attenuated ZIKV vaccine (3'UTR-∆10-LAV) in a pregnant mouse model. Maternal immunization with 3'UTR-∆10-LAV does not cause any adverse effects on pregnancy, fetal development, or offspring behavior. One maternal immunization fully protects dams against ZIKV infection and in utero transmission. Although neutralizing antibody alone is sufficient to prevent in utero transmission, a higher neutralizing titer is required to protect pregnant mice against in utero transmission than that required to protect non-pregnant mice against viral infection. The immunized dams transfer maternal antibodies to pups, which protect neonates against ZIKV infection. Notably, pregnancy weakens maternal T cell response to 3'UTR-∆10-LAV vaccination. Our results suggest that, besides vaccinating non-pregnant individuals, 3'UTR-∆10-LAV may also be considered for maternal vaccination.


Asunto(s)
Inmunidad , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Vacunación , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Embarazo , Linfocitos T/inmunología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/uso terapéutico , Vacunas Virales/efectos adversos , Vacunas Virales/uso terapéutico , Virus Zika/genética , Infección por el Virus Zika/virología
12.
Front Mol Neurosci ; 12: 178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379500

RESUMEN

Using a high resolution in situ hybridization technique we have measured PIEZO1, PIEZO2, and TRPV1 transcripts in mouse dorsal root ganglion (DRG) neurons. Consistent with previous studies, PIEZO2 transcripts were highly expressed in DRG neurons of all sizes, including most notably the largest diameter neurons implicated in mediating touch and proprioception. In contrast, PIEZO1 transcripts were selectively expressed in smaller DRG neurons, which are implicated in mediating nociception. Moreover, the small neurons expressing PIEZO1 were mostly distinct from those neurons that strongly expressed TRPV1, one of the channels implicated in heat-nociception. Interestingly, while PIEZO1- and TRPV1- expressing neurons form essentially non-overlapping populations, PIEZO2 showed co-expression in both populations. Using an in vivo functional test for the selective expression, we found that Yoda1, a PIEZO1-specific agonist, induced a mechanical hyperalgesia that displayed a significantly prolonged time course compared with that induced by capsaicin, a TRPV1-specific agonist. Taken together, our results indicate that PIEZO1 should be considered a potential candidate in forming the long sought channel mediating mechano-nociception.

13.
Biol Res Nurs ; 21(4): 400-406, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31146541

RESUMEN

Osteoarthritis (OA) is the most common cause of pain in people aged >45 years, and the knee is the most commonly affected joint. There is a growing interest in understanding the biological factors that influence pain among older adults, but few studies have examined the relationship between ß-endorphin and experimental pain sensitivity in older adults with knee OA pain. The purpose of this study was to investigate the relationship between resting plasma levels of ß-endorphin and experimental pain sensitivity. This study was a secondary analysis of data for 40 adults with knee OA pain in whom quantitative sensory testing was used to measure experimental sensitivity to heat- and mechanically induced pain. The mean age of the sample was 60 years (SD = 9 years), and approximately half were female (53%). Regression analyses indicated that ß-endorphin level was negatively related to pressure pain threshold (ß = -17.18, p = .02) and positively related to punctate mechanical pain (ß = 17.13, p = .04), after controlling for age, gender, and OA severity. We did not find a significant relationship between ß-endorphin and heat pain tolerance. The results suggest that higher circulating levels of ß-endorphin at rest are associated with increased sensitivity to mechanical pain in older adults with knee OA. These findings add to the literature regarding biological factors associated with pain sensitivity in older adults with chronic pain. Additional studies are needed to identify mediators of the relationship between ß-endorphin and pain sensitivity in OA and other musculoskeletal pain conditions.


Asunto(s)
Osteoartritis de la Rodilla/metabolismo , Umbral del Dolor , Líquido Sinovial/metabolismo , betaendorfina/metabolismo , Anciano , Femenino , Humanos , Articulación de la Rodilla/metabolismo , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Análisis de Regresión
14.
Exp Ther Med ; 17(6): 4748-4756, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31105793

RESUMEN

Scutellaria baicalensis (S. baicalensis) has been used to manage diarrhea, and its anti-inflammatory effects are responsible for anti-diarrheal effects. However, there are no data concerning its direct effect on colonic motility. Therefore, the effects of the major components of S. baicalensis (baicalin, baicalein and wogonin) on colonic motility were investigated. A segment of the distal colon of rats was placed in Krebs solution to monitor spontaneous giant contractions (GCs). Changes in GCs were recorded after applying baicalin, baicalein or wogonin. After pretreatment with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), 1H-(1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), tetradotoxin, w-conotoxin, apamin, and iberiotoxin, changes in GCs by wogonin were recorded and analyzed. The segment of the distal colon showed spontaneous GCs at a mean amplitude of 3.7±0.3 g with a frequency of 0.8±0.1/min. Baicalin, baicalein, and wogonin reduced both the amplitude and the frequency of GCs in a dose-dependent manner. Wogonin had the most potent inhibitory effect on GCs (IC50 was 14.6 µM in amplitude and 14.2 µM in frequency). Wogonin-induced GC reduction was not significantly affected by the inhibition of nitric oxide/cGMP pathways with L-NAME and ODQ. Blocking the enteric neurotransmission with tetradotoxin and ω-conotoxin was ineffective on the wogonin-induced reduction of GCs. Ca2+-activated K+ (KCa) channel blockers (apamin and iberiotoxin) significantly attenuated the inhibitory effects of wogonin on GCs (P<0.01). Wogonin was effective in inhibiting colonic motility, probably through the opening of KCa channels located in the smooth muscle apparatus. These findings suggest that wogonin may be a candidate drug for the management of dysmotility-related diarrhea.

15.
Mol Pain ; 15: 1744806919840098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30857460

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse side effect of many anti-cancer chemotherapeutic treatments. CIPN often causes neuropathic pain in extremities, and oxidative stress has been shown to be a major contributing factor to this pain. In this study, we determined the site of oxidative stress associated with pain (specifically, mechanical hypersensitivity) in cisplatin- and paclitaxel-treated mouse models of CIPN and investigated the neurophysiological mechanisms accounting for the pain. C57BL/6N mice that received either cisplatin or paclitaxel (2 mg/kg, once daily on four alternate days) developed mechanical hypersensitivity to von Frey filament stimulations of their hindpaws. Cisplatin-induced mechanical hypersensitivity was inhibited by silencing of Transient Receptor Potential channels V1 (TRPV1)- or TRPA1-expressing afferents, whereas paclitaxel-induced mechanical hypersensitivity was attenuated by silencing of Aß fibers. Although systemic delivery of phenyl N-tert-butylnitrone, a reactive oxygen species scavenger, alleviated mechanical hypersensitivity in both cisplatin- and paclitaxel-treated mice, intraplantar phenyl N-tert-butylnitrone was effective only in cisplatin-treated mice, and intrathecal phenyl N-tert-butylnitrone, only in paclitaxel-treated mice. In a reactive oxygen species-dependent manner, the mechanosensitivity of Aδ/C fiber endings in the hindpaw skin was increased in cisplatin-treated mice, and the excitatory synaptic strength in the spinal dorsal horn was potentiated in paclitaxel-treated mice. Collectively, these results suggest that cisplatin-induced mechanical hypersensitivity is attributed to peripheral oxidative stress sensitizing mechanical nociceptors, whereas paclitaxel-induced mechanical hypersensitivity is due to central (spinal) oxidative stress maintaining central sensitization that abnormally produces pain in response to Aß fiber inputs.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Neuralgia/etiología , Neuralgia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Cisplatino/efectos adversos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Masculino , Ratones Endogámicos C57BL , Paclitaxel/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
16.
Mol Pain ; 14: 1744806918797032, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30152257

RESUMEN

Reactive oxygen species has been suggested as a key player in neuropathic pain, causing central sensitization by changing synaptic strengths in spinal dorsal horn neurons. However, it remains unclear as to what type of reactive oxygen species changes what aspect of synaptic strengths for central sensitization in neuropathic pain conditions. In this study, we investigated whether mitochondrial superoxide affects both excitatory and inhibitory synaptic strengths in spinal dorsal horn neurons after peripheral nerve injury. Upregulation of mitochondrial superoxide level by knockout of superoxide dismutase-2 exacerbated neuropathic mechanical hypersensitivity caused by L5 spinal nerve ligation, whereas downregulation of mitochondrial superoxide level by overexpression of superoxide dismutase-2 alleviated the hypersensitivity. In spinal nerve ligation condition, the frequency of miniature excitatory postsynaptic currents increased, while that of miniature inhibitory postsynaptic currents decreased in spinal dorsal horn neurons. Superoxide dismutase-2-knockout augmented, whereas superoxide dismutase-2-overexpression prevented, the spinal nerve ligation-increased miniature excitatory postsynaptic currents frequency. However, superoxide dismutase-2-knockout had no effect on the spinal nerve ligation-decreased miniature inhibitory postsynaptic current frequency, and superoxide dismutase-2-overexpression unexpectedly decreased miniature inhibitory postsynaptic current frequency in the normal condition. When applied to the spinal cord slice during in vitro recordings, mitoTEMPO, a specific scavenger of mitochondrial superoxide, reduced the spinal nerve ligation-increased miniature excitatory postsynaptic currents frequency but failed to normalize the spinal nerve ligation-decreased miniature inhibitory postsynaptic current frequency. These results suggest that in spinal dorsal horn neurons, high levels of mitochondrial superoxide increase excitatory synaptic strength after peripheral nerve injury and contribute to neuropathic mechanical hypersensitivity. However, mitochondrial superoxide does not seem to be involved in the decreased inhibitory synaptic strength in this neuropathic pain condition.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuralgia/patología , Células del Asta Posterior/fisiología , Superóxido Dismutasa/metabolismo , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Hiperalgesia , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/genética , Neuralgia/fisiopatología , Umbral del Dolor/fisiología , Técnicas de Placa-Clamp , Superóxido Dismutasa/genética , Factores de Tiempo
17.
IEEE Trans Biomed Circuits Syst ; 12(5): 1131-1143, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30040661

RESUMEN

In this work, a switched-capacitor-based stimulator circuit that enables efficient energy harvesting for neurostimulation applications is presented, followed by the discussion on the optimization of the inductive coupling front-end through a codesign approach. The stimulator salvages input energy and stores it in a storage capacitor, and, when the voltage reaches a threshold, releases the energy as an output stimulus. The dynamics of the circuit are automatically enabled by a positive feedback, eliminating any stimulation control circuit blocks. The IC is fabricated in a 180 nm CMOS process and achieves a quiescent current consumption of 1.8 µA. The inductive coupling front-end is optimized as a loaded resonator, in which the input impedance of the custom rectifier directly loads the inductive loop antenna. The loaded quality factor and the rectifier's efficiency determine the reception sensitivity of the stimulator, while a balance should be achieved for the robustness of the system against dielectric medium variations by increasing the reception bandwidth. The finalized stimulator adopts a 4.9 mm × 4.9 mm inductive loop antenna and achieves an overall assembly dimension of 5 mm × 7.5 mm. Operating at the resonant frequency of 198 MHz, the stimulator works at a 14 cm distance from the transmitter in the air. An animal experiment was performed, in which a fully implanted stimulator excited the sciatic nerve of a rat that consequently triggered the movement of the limb.


Asunto(s)
Suministros de Energía Eléctrica , Prótesis e Implantes , Animales , Estimulación Eléctrica , Electrodos , Electromiografía , Diseño de Equipo/instrumentación , Ratas , Ratas Sprague-Dawley , Nervio Ciático/fisiología , Tecnología Inalámbrica
19.
Pain ; 158(11): 2137-2146, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28708760

RESUMEN

Spinal synaptic plasticity is believed to drive central sensitization that underlies the persistent nature of neuropathic pain. Our recent data showed that synaptic plasticity in the dorsal horn is cell type specific: intense afferent stimulation produced long-term potentiation (LTP) in excitatory spinothalamic tract neurons (STTn), whereas it produced long-term depression (LTD) in inhibitory GABAergic interneurons (GABAn). In addition, reactive oxygen species (ROS) were shown to be involved in LTP in STTn (STTn-LTP) and in LTD in GABAn (GABAn-LTD). This study examined the roles of 2 biologically important ROS--superoxide [·O2] and hydroxyl radicals [·OH]--in neuropathic mechanical hyperalgesia and cell type-specific spinal synaptic plasticity. The [·O2] donor induced stronger mechanical hyperalgesia than the [·OH] donor in naive mice. The [·O2] scavenger showed greater antihyperalgesic effect than [·OH] scavengers in the spinal nerve ligation (SNL) mouse model of neuropathic pain. In addition, the [·O2] donor induced both STTn-LTP and GABAn-LTD, but the [·OH] donor induced only GABAn-LTD. On the other hand, the [·O2] scavenger inhibited STTn-LTP and GABAn-LTD induction in naive mice and alleviated SNL-induced potentiation in STTn and depression in GABAn. The [·OH] scavenger, however, inhibited depression in GABAn but did not interfere with potentiation in STTn. These results indicate that mechanical hyperalgesia in SNL mice is the result of the combination of STTn-LTP and GABAn-LTD. Behavioral outcomes compliment electrophysiological results which suggest that [·O2] mediates both STTn-LTP and GABAn-LTD, whereas [·OH] is involved primarily in GABAn-LTD.


Asunto(s)
Neuronas GABAérgicas/fisiología , Radical Hidroxilo/metabolismo , Neuralgia/patología , Plasticidad Neuronal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Vías Aferentes/fisiopatología , Animales , Óxidos N-Cíclicos/farmacología , Modelos Animales de Enfermedad , Depuradores de Radicales Libres/uso terapéutico , GABAérgicos/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuralgia/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Marcadores de Spin , Nervios Espinales/lesiones , Nervios Espinales/patología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/fisiología , Tiourea/análogos & derivados , Tiourea/farmacología
20.
Mol Pain ; 13: 1744806917713907, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28587509

RESUMEN

Abstract: Intradermally injected capsaicin induces secondary mechanical hyperalgesia and allodynia outside the primary (i.e., capsaicininjected) site. This secondary mechanical hypersensitivity is attributed to central sensitization in which reactive oxygen species (ROS) play a key role. We examined whether ROS would be differentially involved in secondary mechanical hyperalgesia and allodynia using a mouse intraplantar capsaicin injection model. In mice, capsaicin-induced secondary mechanical hyperalgesia outlasted its allodynia counterpart. Unlike the hyperalgesia, the allodynia was temporarily abolished by an anesthetic given at the capsaicin-injected site. The ROS scavenger phenyl-N-tert-butylnitrone slowed the development of both secondary mechanical hyperalgesia and allodynia when administered before intraplantar capsaicin injection, whereas it inhibited only the allodynia when administered after capsaicin had already induced secondary mechanical hyperalgesia and allodynia. Intrathecal injection of the ROS donor KO2 induced both mechanical hyperalgesia and allodynia with the former outlasting the latter. Metformin, an activator of redox-sensitive adenosine monophosphate-activated protein kinase, selectively inhibited capsaicin-induced secondary mechanical allodynia and intrathecal KO2-induced mechanical allodynia. These results suggest that ROS is required for rapid activation of central sensitization mechanisms for both secondary mechanical hyperalgesia and allodynia after intraplantar capsaicin injection. Once activated, the mechanism for the hyperalgesia is longlasting without being critically dependent on ongoing afferent activities arising from the capsaicin-injected site and the continuous presence of ROS. On the contrary, the ongoing afferent activities, ROS presence and adenosine monophosphate-activated protein kinase inhibition are indispensable for the maintenance mechanism for capsaicin-induced secondary mechanical allodynia.


Asunto(s)
Capsaicina/farmacología , Hiperalgesia/inducido químicamente , Dolor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Inyecciones Espinales , Masculino , Ratones Endogámicos C57BL , Dimensión del Dolor/métodos , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA