Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cytometry A ; 105(8): 639-652, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867433

RESUMEN

With the recent discovery of their ability to produce neutrophil extracellular traps (NETs), neutrophils are increasingly appreciated as active participants in infection and inflammation. NETs are characterized as large, web-like networks of DNA and proteins extruded from neutrophils, and there is considerable interest in how these structures drive disease in humans. Advancing research in this field is contingent on developing novel tools for quantifying NETosis. To this end, we have developed a 7-marker flow cytometry panel for analyzing NETosis on human peripheral neutrophils following in vitro stimulation, and in fresh circulating neutrophils under inflammatory conditions. This panel was optimized on neutrophils isolated from whole blood and analyzed fresh or in vitro stimulated with phorbol 12-myristate 13-acetate (PMA) or ionomycin, two known NET-inducing agonists. Neutrophils were identified as SSChighFSChighCD15+CD66b+. Neutrophils positive for amine residues and 7-Aminoactinomycin D (7-AAD), our DNA dye of choice, were deemed necrotic (Zombie-NIR+7-AAD+) and were removed from downstream analysis. Exclusion of Zombie-NIR and positivity for 7-AAD (Zombie-NIRdim7-AAD+) was used here as a marker of neutrophil-appendant DNA, a key feature of NETs. The presence of two NET-associated proteins - myeloperoxidase (MPO) and neutrophil elastase (NE) - were utilized to identify neutrophil-appendant NET events (SSChighFSChighCD15+CD66b+Zombie NIRdim7-AAD+MPO+NE+). We also demonstrate that NETotic neutrophils express citrullinated histone H3 (H3cit), are concentration-dependently induced by in vitro PMA and ionomycin stimulation but are disassembled with DNase treatment, and are present in both chronic and acute inflammation. This 7-color flow cytometry panel provides a novel tool for examining NETosis in humans.


Asunto(s)
Trampas Extracelulares , Citometría de Flujo , Neutrófilos , Acetato de Tetradecanoilforbol , Humanos , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Citometría de Flujo/métodos , Acetato de Tetradecanoilforbol/farmacología , Ionomicina/farmacología , Fenotipo , Peroxidasa/metabolismo , Inflamación/inmunología , Biomarcadores/metabolismo , Elastasa de Leucocito/metabolismo
2.
Glia ; 72(10): 1801-1820, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38899723

RESUMEN

The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 µM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Ratones Endogámicos C57BL , Morfinanos , Vaina de Mielina , Sirolimus , Compuestos de Espiro , Animales , Morfinanos/farmacología , Masculino , Compuestos de Espiro/farmacología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/tratamiento farmacológico , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Sirolimus/farmacología , Cuprizona/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos
3.
Angew Chem Int Ed Engl ; 63(13): e202316791, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38308859

RESUMEN

Heparin and heparan sulfate (HS) are naturally occurring mammalian glycosaminoglycans, and their synthetic and semi-synthetic mimetics have attracted significant interest as potential therapeutics. However, understanding the mechanism of action by which HS, heparin, and HS mimetics have a biological effect is difficult due to their highly charged nature, broad protein interactomes, and variable structures. To address this, a library of novel single-entity dendritic mimetics conjugated to BODIPY, Fluorine-19 (19 F), and biotin was synthesized for imaging and localization studies. The novel dendritic scaffold allowed for the conjugation of labeling moieties without reducing the number of sulfated capping groups, thereby better mimicking the multivalent nature of HS-protein interactions. The 19 F labeled mimetics were assessed in phantom studies and were detected at concentrations as low as 5 mM. Flow cytometric studies using a fluorescently labeled mimetic showed that the compound associated with immune cells from tumors more readily than splenic counterparts and was directed to endosomal-lysosomal compartments within immune cells and cancer cells. Furthermore, the fluorescently labeled mimetic entered the central nervous system and was detectable in brain-infiltrating immune cells 24 hours after treatment. Here, we report the enabling methodology for rapidly preparing various labeled HS mimetics and molecular probes with diverse potential therapeutic applications.


Asunto(s)
Biotina , Compuestos de Boro , Heparitina Sulfato , Animales , Heparitina Sulfato/química , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Mamíferos/metabolismo
4.
J Exp Zool A Ecol Integr Physiol ; 341(1): 60-72, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921244

RESUMEN

Leukocyte profiles are broadly used to assess the health status of many species. Reference intervals, and an understanding of the factors that may influence these intervals, are necessary for adequate interpretation of leukograms. Using a data set that spans over three decades, we investigated variation in leukocyte profile in several populations of the evolutionarily unique reptile, the tuatara (Sphenodon punctatus). To do this, we first established reference intervals for each leukocyte type according to best practices. Next, we determined that source population and sampling date were the two most important predictors of leukocyte makeup. We found significant differences in the ratio of heterophils: lymphocytes (H:L) between populations, with tuatara on the more resource-stressed sampling island having a significantly higher ratio of H:L. Finally, we found that sampling location, sex, and life stage did not explain variation in the responses of tuatara to stimulation with Concanavalin A and lipopolysaccharide in both 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide and Griess assay experiments. Our results offer important insight into the function of leukocytes in reptiles.


Asunto(s)
Leucocitos , Reptiles , Animales
5.
Clin Transl Immunology ; 12(12): e1480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090669

RESUMEN

Objectives: Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. Methods: Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. Results: Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. Conclusion: This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.

6.
J Neuroinflammation ; 20(1): 251, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915090

RESUMEN

BACKGROUND: Disruption of the extracellular matrix at the blood-brain barrier (BBB) underpins neuroinflammation in multiple sclerosis (MS). The degradation of extracellular matrix components, such as heparan sulfate (HS) proteoglycans, can be prevented by treatment with HS-mimetics through their ability to inhibit the enzyme heparanase. The heparanase-inhibiting ability of our small dendrimer HS-mimetics has been investigated in various cancers but their efficacy in neuroinflammatory models has not been evaluated. This study investigates the use of a novel HS-mimetic, Tet-29, in an animal model of MS. METHODS: Neuroinflammation was induced in mice by experimental autoimmune encephalomyelitis, a murine model of MS. In addition, the BBB and choroid plexus were modelled in vitro using transmigration assays, and migration of immune cells in vivo and in vitro was quantified by flow cytometry. RESULTS: We found that Tet-29 significantly reduced lymphocyte accumulation in the central nervous system which, in turn, decreased disease severity in experimental autoimmune encephalomyelitis. The disease-modifying effect of Tet-29 was associated with a rescue of BBB integrity, as well as inhibition of activated lymphocyte migration across the BBB and choroid plexus in transwell models. In contrast, Tet-29 did not significantly impair in vivo or in vitro steady state-trafficking under homeostatic conditions. CONCLUSIONS: Together these results suggest that Tet-29 modulates, rather than abolishes, trafficking across central nervous system barriers.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Enfermedades Neuroinflamatorias , Sistema Nervioso Central/metabolismo , Barrera Hematoencefálica/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL
7.
Immunol Cell Biol ; 101(10): 882-890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842760

RESUMEN

This year marks the 100th year of the publication of Immunology & Cell Biology since it was first published in March 1924 as the Australian Journal of Experimental Biology and Medical Science. In this Editorial, we recount the journal from its founding, to its focus on immunology, through to the modern era.


Asunto(s)
Alergia e Inmunología , Australia
8.
Immunol Cell Biol ; 101(1): 6-8, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522837
9.
10.
Front Pharmacol ; 13: 813562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250563

RESUMEN

Chemotherapy-induced neuropathic pain is a common side effect for cancer patients which has limited effective treatment options. Kappa opioid receptor (KOR) agonists are a promising alternative to currently available opioid drugs due to their low abuse potential. In the current study, we have investigated the effects of Salvinorin A (SalA) analogues, 16-Ethynyl SalA, 16-Bromo SalA and ethyoxymethyl ether (EOM) SalB, and in a preclinical model of paclitaxel-induced neuropathic pain in male and female C57BL/6J mice. Using an acute dose-response procedure, we showed that compared to morphine, 16-Ethynyl SalA was more potent at reducing mechanical allodynia; and SalA, 16-Ethynyl SalA, and EOM SalB were more potent at reducing cold allodynia. In the mechanical allodynia testing, U50,488 was more potent in males and SalA was more potent in females. There were no sex differences in the acute cold allodynia testing. In the chronic administration model, treatment with U50,488 (10 mg/kg) reduced the mechanical and cold allodynia responses to healthy levels over 23 days of treatment. Overall, we have shown that KOR agonists are effective in a model of chemotherapy-induced neuropathic pain, indicating that KOR agonists could be further developed to treat this debilitating condition.

11.
Immunol Cell Biol ; 100(1): 6-8, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939210
12.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725148

RESUMEN

The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.


Asunto(s)
Antiinflamatorios/análisis , Flavonoides/aislamiento & purificación , Quelantes del Hierro/análisis , Fenoles/aislamiento & purificación , Psychotria/química , Rutina/aislamiento & purificación , Animales , Evaluación Preclínica de Medicamentos , Etnobotánica , Femenino , Genómica , Masculino , Medicina Tradicional , Metabolómica , Ratones Endogámicos C57BL , Plantas Medicinales/química , Saccharomyces cerevisiae , Samoa
13.
14.
Sci Rep ; 11(1): 2966, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536582

RESUMEN

Multiple sclerosis is a disease characterised by axonal demyelination in the central nervous system (CNS). The atypical antipsychotic drug clozapine attenuates experimental autoimmune encephalomyelitis (EAE), a mouse model used to study multiple sclerosis, but the precise mechanism is unknown and could include both peripheral and CNS-mediated effects. To better understand where clozapine exerts its protective effects, we investigated the tissue distribution and localisation of clozapine using matrix-assisted laser desorption ionization imaging mass spectrometry and liquid chromatography-mass spectrometry. We found that clozapine was detectable in the brain and enriched in specific brain regions (cortex, thalamus and olfactory bulb), but the distribution was not altered by EAE. Furthermore, although not altered in other organs, clozapine levels were significantly elevated in serum during EAE. Because clozapine antagonises dopamine receptors, we analysed dopamine levels in serum and brain as well as dopamine receptor expression on brain-resident and infiltrating immune cells. While neither clozapine nor EAE significantly affected dopamine levels, we observed a significant downregulation of dopamine receptors 1 and 5 and up-regulation of dopamine receptor 2 on microglia and CD4+-infiltrating T cells during EAE. Together these findings provide insight into how neuroinflammation, as modelled by EAE, alters the distribution and downstream effects of clozapine.


Asunto(s)
Clozapina/farmacocinética , Dopamina/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Receptores Dopaminérgicos/metabolismo , Animales , Antipsicóticos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Linfocitos T CD4-Positivos/metabolismo , Clozapina/administración & dosificación , Dopamina/sangre , Regulación hacia Abajo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Microglía/metabolismo , Microglía/patología , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito/administración & dosificación , Glicoproteína Mielina-Oligodendrócito/inmunología , Distribución Tisular , Regulación hacia Arriba/efectos de los fármacos
15.
Immunol Cell Biol ; 99(1): 6-8, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33403673
16.
Clin Transl Immunology ; 10(1): e1234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33489124

RESUMEN

OBJECTIVES: Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side-effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side-effect profile. METHODS: Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non-immune demyelination. RESULTS: Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor-BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR-dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. CONCLUSIONS: Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.

17.
Front Neurol ; 12: 782190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987466

RESUMEN

Multiple sclerosis is a neurodegenerative disease associated with demyelination and neuroinflammation in the central nervous system. There is an urgent need to develop remyelinating therapies to better treat multiple sclerosis and other demyelinating diseases. The kappa opioid receptor (KOR) has been identified as a potential target for the development of remyelinating therapies; however, prototypical KOR agonists, such as U50,488 have side effects, which limit clinical use. In the current study, we investigated a Salvinorin A analog, ethoxymethyl ether Salvinorin B (EOM SalB) in two preclinical models of demyelination in C57BL/6J mice. We showed that in cellular assays EOM SalB was G-protein biased, an effect often correlated with fewer KOR-mediated side effects. In the experimental autoimmune encephalomyelitis model, we found that EOM SalB (0.1-0.3 mg/kg) effectively decreased disease severity in a KOR-dependent manner and led to a greater number of animals in recovery compared to U50,488 treatment. Furthermore, EOM SalB treatment decreased immune cell infiltration and increased myelin levels in the central nervous system. In the cuprizone-induced demyelination model, we showed that EOM SalB (0.3 mg/kg) administration led to an increase in the number of mature oligodendrocytes, the number of myelinated axons and the myelin thickness in the corpus callosum. Overall, EOM SalB was effective in two preclinical models of multiple sclerosis and demyelination, adding further evidence to show KOR agonists are a promising target for remyelinating therapies.

18.
19.
Org Lett ; 22(24): 9427-9432, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33232161

RESUMEN

The first total synthesis of (-)-TAN-2483B, a fungal metabolite possessing a densely functionalized furo[3,4-b]pyran-5-one framework, is achieved in 14 steps from d-mannose. Generation of the 2,6-trans-pyran is by cyclopropane ring expansion followed by α-selective alkynylation. Julia-Kocienski olefination introduces the E-propenyl side chain. Alkyne functionalization and carbonylation stereoselectively establish the bicyclic core of (-)-TAN-2483B. Inhibition of kinases Btk and Bmx, bacterial priority pathogens, and cytokine production in splenocytes indicates promising therapeutic potential.


Asunto(s)
Ciclopropanos/química , Hongos/metabolismo , Lactonas/síntesis química , Piranos/síntesis química , Hongos/química , Lactonas/química , Estructura Molecular , Piranos/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...