Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674362

RESUMEN

Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.


Asunto(s)
Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Masculino , Italia , Niño , Adolescente , Preescolar
2.
Front Psychiatry ; 14: 1238797, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025444

RESUMEN

Autism spectrum disorder is a neurodevelopmental disorder characterized by social interactions and communication skills impairments that include intellectual disabilities, communication delays and self-injurious behaviors; often are present systemic comorbidities such as gastrointestinal disorders, obesity and cardiovascular disease. Moreover, in recent years has emerged a link between alterations in the intestinal microbiota and neurobehavioral symptoms in children with autism spectrum disorder. Recently, physical activity and exercise interventions are known to be beneficial for improving communication and social interaction and the composition of microbiota. In our review we intend to highlight how different types of sports can help to improve communication and social behaviors in children with autism and also show positive effects on gut microbiota composition.

3.
Genes (Basel) ; 14(8)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37628702

RESUMEN

Expanded carrier screening (ECS) means a comprehensive genetic analysis to evaluate an individual's carrier status. ECS is becoming more frequently used, thanks to the availability of techniques such as next generation sequencing (NGS) and array comparative genomic hybridization (aCGH), allowing for extensive genome-scale analyses. Here, we report the case of a couple who underwent ECS for a case of autism spectrum disorder in the male partner family. aCGH and whole-exome sequencing (WES) were performed in the couple. aCGH analysis identified in the female partner two deletions involving genes associated to behavioral and neurodevelopment disorders. No clinically relevant alterations were identified in the husband. Interestingly, WES analysis identified in the male partner a pathogenic variant in the LPL gene that is emerging as a novel candidate gene for autism. This case shows that ECS may be useful in clinical contexts, especially when both the partners are analyzed before conception, thus allowing the estimation of their risk to transmit an inherited condition. On the other side, there are several concerns related to possible incidental findings and difficult-to-interpret results. Once these limits are defined by the establishment of specific guidelines, ECS may have a greater diffusion.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Femenino , Masculino , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Hibridación Genómica Comparativa , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Fertilización , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Medicina (Kaunas) ; 58(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454361

RESUMEN

Background and Objectives: The development and standardization of genome-wide technologies able to carry out high-resolution, genomic analyses in a cost- and time-affordable way is increasing our knowledge regarding the molecular bases of complex diseases like autism spectrum disorder (ASD). ASD is a group of heterogeneous diseases with multifactorial origins. Genetic factors seem to be involved, albeit they remain still largely unknown. Here, we report the case of a child with a clinical suspicion of ASD investigated by using such a genomic high-resolution approach. Materials and Methods: Both array comparative genomic hybridization (aCGH) and exome sequencing were carried out on the family trio. aCGH was performed using the 4 × 180 K SurePrint G3 Human CGH Microarray, while the Human All Exon V7 targeted SureSelect XT HS panel was used for exome sequencing. Results: aCGH identified a paternally inherited duplication of chromosome 7 involving the CNTNAP2 gene, while 5 potentially clinically-relevant variants were identified by exome sequencing. Conclusions: Within the identified genomic alterations, the CNTNAP2 gene duplication may be related to the patient's phenotype. Indeed, this gene has already been associated with brain development and cognitive functions, including language. The paternal origin of the alteration cannot exclude an incomplete penetrance. Moreover, other genomic factors may act as phenotype modifiers combined with CNTNAP2 gene duplication. Thus, the case reported herein strongly reinforces the need to use extensive genomic analyses to shed light on the bases of complex diseases.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Hibridación Genómica Comparativa , Exoma/genética , Duplicación de Gen , Pruebas Genéticas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...