Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982752

RESUMEN

Current 3D cancer models (in vitro) fail to reproduce complex cancer cell extracellular matrices (ECMs) and the interrelationships occurring (in vivo) in the tumor microenvironment (TME). Herein, we propose 3D in vitro colorectal cancer microtissues (3D CRC µTs), which reproduce the TME more faithfully in vitro. Normal human fibroblasts were seeded onto porous biodegradable gelatin microbeads (GPMs) and were continuously induced to synthesize and assemble their own ECMs (3D Stroma µTs) in a spinner flask bioreactor. Then, human colon cancer cells were dynamically seeded onto the 3D Stroma µTs to achieve the 3D CRC µTs. Morphological characterization of the 3D CRC µTs was performed to assess the presence of different complex macromolecular components that feature in vivo in the ECM. The results showed the 3D CRC µTs recapitulated the TME in terms of ECM remodeling, cell growth, and the activation of normal fibroblasts toward an activated phenotype. Then, the microtissues were assessed as a drug screening platform by evaluating the effect of 5-Fluorouracil (5-FU), curcumin-loaded nanoemulsions (CT-NE-Curc), and the combination of the two. When taken together, the results showed that our microtissues are promising in that they can help clarify complex cancer-ECM interactions and evaluate the efficacy of therapies. Moreover, they may be combined with tissue-on-chip technologies aimed at addressing further studies in cancer progression and drug discovery.


Asunto(s)
Neoplasias del Colon , Matriz Extracelular , Humanos , Sistemas de Liberación de Medicamentos , Fluorouracilo/farmacología , Microambiente Tumoral
2.
Acta Biomater ; 116: 209-222, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32911106

RESUMEN

Here, we proposed an innovative organotypic cervical tumor model able to investigate the bi-directional crosstalk between epithelium and stroma as well as the key disease features of the epithelial-mesenchymal transition (EMT) process in vitro. By using a modular tissue assembling approach, we developed 3D cervical stromal models composed of primary human cervical fibroblasts (HCFs) or cervical cancer-associated fibroblasts (CCAFs) embedded in their own ECM to produce 3D normal cervical-instructed stroma (NCIS) or 3D cervical cancer-instructed stroma (CCIS), respectively. Then, we demonstrate the role of the tumor microenvironment (TME) in potentiating the intrinsic invasive attitude of cervical cancer derived SiHa cells and increasing their early viral gene expression by comparing the SiHa behavior when cultured on NCIS or CCIS (SiHa-NCIS or SiHa-CCIS). We proved the crucial role of the CCAFs and stromal microenvironment in the mesenchymalization of the cancer epithelial cells by analyzing several EMT markers. We further assessed the expression of the epithelial adhesion molecules, matricellular enzymes, non-collagenous proteins as well as ECM remodeling in terms of collagen fibers texture and assembly. This cervical tumor model, closely recapitulating key cervical carcinogenesis features, may provide efficient and relevant support to current approaches characterizing cancer progression and develop new anticancer therapy targeting stroma rather than cancer cells.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Cuello Uterino , Transición Epitelial-Mesenquimal , Femenino , Humanos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...