Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 14(7): 977-985, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37465292

RESUMEN

The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.

2.
ACS Med Chem Lett ; 13(3): 403-408, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35300093

RESUMEN

JP4-039 is an alkene peptide isostere that acts as a low-micromolar inhibitor of erastin- and RSL-3-induced ferroptotic cell death in the HT-1080 cell line. In this work, we have developed new synthetic strategies that allow access to analogues of this lead structure. Enantioselective vinylogous Mannich or cross-metathesis reactions were key to the preparation of a series of analogues that culminated in the preparation of the ca. 30-fold more potent analogue (S)-6c. Structure-activity relationship analyses used both HT-1080 cells and a luminescence-based ferroptosis assay in RAW 264.7 macrophages. In particular, α,α-disubstituted alkene peptide isosteres (Rα ≠ H) were found to exceed the potency of the corresponding glycine (Rα = H) derivatives.

3.
Epigenetics ; 15(6-7): 604-617, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31595832

RESUMEN

Signal Transducers and Activators of Transcription-3 (STAT3), a potent oncogenic transcription factor, is constitutively activated in lung cancer, but mutations in pathway genes are infrequent. Protein Tyrosine Phosphatase Receptor-T (PTPRT) is an endogenous inhibitor of STAT3 and PTPRT loss-of-function represents one potential mechanism of STAT3 hyperactivation as observed in other malignancies. We determined the role of PTPRT promoter methylation and sensitivity to STAT3 pathway inhibitors in non-small cell lung cancer (NSCLC). TCGA and Pittsburgh lung cancer cohort methylation data revealed hypermethylation of PTPRT associated with diminished mRNA expression in a subset of NSCLC patients. We report frequent hypermethylation of the PTPRT promoter which correlates with transcriptional silencing of PTPRT and increased STAT3 phosphorylation (Y705) as determined by methylation-specific PCR (MSP) and real time quantitative reverse transcription (RT)-PCR in NSCLC cell lines. Silencing of PTPRT using siRNA in H520 lung cancer cell line resulted in increased pSTAT3Tyr705 and upregulation of STAT3 target genes such as Cyclin D1 and Bcl-XL expression. We show this association of PRPRT methylation with upregulation of the STAT3 target genes Cyclin D1 and Bcl-XL in patient derived lung tumour samples. We further demonstrate that PTPRT promoter methylation associated with different levels of pSTAT3Ty705 in lung cancer cell lines had selective sensitivity to STAT3 pathway small molecule inhibitors (SID 864,669 and SID 4,248,543). Our data strongly suggest that silencing of PTPRT by promoter hypermethylation is an important mechanism of STAT3 hyperactivation and targeting STAT3 may be an effective approach for the development of new lung cancer therapeutics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Metilación de ADN , Silenciador del Gen , Neoplasias Pulmonares/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Factor de Transcripción STAT3/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Regiones Promotoras Genéticas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
4.
ACS Med Chem Lett ; 9(11): 1075-1081, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30429948

RESUMEN

Optimization of the side-chain of a phenyl indole scaffold identified from a high-throughput screening campaign for inhibitors of the AAA+ ATPase p97 is reported. The addition of an N-alkyl piperazine led to high potency of this series in a biochemical assay, activity in cell-based assays, and excellent pharmaceutical properties. Molecular modeling based on a subsequently obtained cryo-EM structure of p97 in complex with a phenyl indole was used to rationalize the potency of these allosteric inhibitors.

5.
Org Biomol Chem ; 15(19): 4096-4114, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28352916

RESUMEN

The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain ß-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sitio Alostérico , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Treonina , Secuencias de Aminoácidos , Ligandos , Modelos Moleculares , Unión Proteica
6.
Bioorg Med Chem Lett ; 26(15): 3581-5, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381083

RESUMEN

Structure-activity relationship studies of a 1,2,4-triazolo-[3,4-b]thiadiazine scaffold, identified in an HTS campaign for selective STAT3 pathway inhibitors, determined that a pyrazole group and specific aryl substitution on the thiadiazine were necessary for activity. Improvements in potency and metabolic stability were accomplished by the introduction of an α-methyl group on the thiadiazine. Optimized compounds exhibited anti-proliferative activity, reduction of phosphorylated STAT3 levels and effects on STAT3 target genes. These compounds represent a starting point for further drug discovery efforts targeting the STAT3 pathway.


Asunto(s)
Antineoplásicos/farmacología , Pirazoles/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Tiadiazinas/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Pirazoles/química , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Tiadiazinas/síntesis química , Tiadiazinas/química , Triazoles/síntesis química , Triazoles/química
7.
ACS Med Chem Lett ; 7(2): 182-7, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26985295

RESUMEN

A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts.

8.
ACS Med Chem Lett ; 7(3): 318-23, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26985322

RESUMEN

Birinapant/TL32711 (1) is a bivalent antagonist of the inhibitor of apoptosis (IAP) family of proteins and was designed to mimic AVPI, the N-terminal tetrapeptide of the second mitochondria-derived activator of caspases (Smac/DIABLO). Birinapant bound to the BIR3 domains of cIAP1, cIAP2, and XIAP with K i values of 1, 36, and 45 nM, respectively. Birinapant-mediated activation of cIAP1 resulted in cIAP1 autoubiquitylation and degradation and correlated with inhibition of TNF-mediated NF-κB activation, induction of tumor cell death in vitro, and tumor regression in vivo. Birinapant is being evaluated in Phase 1/2 trials for the treatment of cancer and hepatitis B virus (HBV) infection. After one year at accelerated storage conditions, a formulation of 1 afforded four degradants in >0.1% abundance by HPLC analysis. The primary degradants (2 and 3) were formed via oxidation of the biindole core, while the secondary degradants (5 and 6) arose via [1,2]-rearrangement of 3 and 2, respectively. Forced degradation conditions were developed, which allowed the isolation of 2 and 3 in multigram quantities. Novel deuterated analogues of 1 were prepared to determine the site of oxidation, and NMR experiments confirmed the chemical structures of 5 and 6. The de novo synthesis of 2, 3, 5, and 6 confirmed these experimental findings.

9.
ACS Med Chem Lett ; 6(12): 1225-30, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26713109

RESUMEN

Exploratory SAR studies of a new phenyl indole chemotype for p97 inhibition revealed C-5 indole substituent effects in the ADPGlo assay that did not fully correlate with either electronic or steric factors. A focused series of methoxy-, trifluoromethoxy-, methyl-, trifluoromethyl-, pentafluorosulfanyl-, and nitro-analogues was found to exhibit IC50s from low nanomolar to double-digit micromolar. Surprisingly, we found that the trifluoromethoxy-analogue was biochemically a better match of the trifluoromethyl-substituted lead structure than a pentafluorosulfanyl-analogue. Moreover, in spite of their almost equivalent strongly electron-depleting effect on the indole core, pentafluorosulfanyl- and nitro-derivatives were found to exhibit a 430-fold difference in p97 inhibitory activities. Conversely, the electronically divergent C-5 methyl- and nitro-analogues both showed low nanomolar activities.

10.
Assay Drug Dev Technol ; 13(7): 356-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26317883

RESUMEN

Signal transducer and activator of transcription factor 3 (STAT3) is hyperactivated in head and neck squamous cell carcinomas (HNSCC). Cumulative evidence indicates that IL-6 production by HNSCC cells and/or stromal cells in the tumor microenvironment activates STAT3 and contributes to tumor progression and drug resistance. A library of 94,491 compounds from the Molecular Library Screening Center Network (MLSCN) was screened for the ability to inhibit interleukin-6 (IL-6)-induced pSTAT3 activation. For contractual reasons, the primary high-content screening (HCS) campaign was conducted over several months in 3 distinct phases; 1,068 (1.1%) primary HCS actives remained after cytotoxic or fluorescent outliers were eliminated. One thousand one hundred eighty-seven compounds were cherry-picked for confirmation; actives identified in the primary HCS and compounds selected by a structural similarity search of the remaining MLSCN library using hits identified in phases I and II of the screen. Actives were confirmed in pSTAT3 IC50 assays, and an IFNγ-induced pSTAT1 activation assay was used to prioritize selective inhibitors of STAT3 activation that would not inhibit STAT1 tumor suppressor functions. Two hundred three concentration-dependent inhibitors of IL-6-induced pSTAT3 activation were identified and 89 of these also produced IC50s against IFN-γ-induced pSTAT1 activation. Forty-nine compounds met our hit criteria: they reproducibly inhibited IL-6-induced pSTAT3 activation by ≥70% at 20 µM; their pSTAT3 activation IC50s were ≤25 µM; they were ≥2-fold selective for pSTAT3 inhibition over pSTAT1 inhibition; a cross target query of PubChem indicated that they were not biologically promiscuous; and they were ≥90% pure. Twenty-six chemically tractable hits that passed filters for nuisance compounds and had acceptable drug-like and ADME-Tox properties by computational evaluation were purchased for characterization. The hit structures were distributed among 5 clusters and 8 singletons. Twenty-four compounds inhibited IL-6-induced pSTAT3 activation with IC50s ≤20 µM and 13 were ≥3-fold selective versus inhibition of pSTAT1 activation. Eighteen hits inhibited the growth of HNSCC cell lines with average IC50s ≤ 20 µM. Four chemical series were progressed into lead optimization: the guanidinoquinazolines, the triazolothiadiazines, the amino alcohols, and an oxazole-piperazine singleton.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Interleucina-6/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Humanos , Interferón gamma/farmacología , Interleucina-6/fisiología , Factor de Transcripción STAT1/fisiología , Factor de Transcripción STAT3/fisiología , Carcinoma de Células Escamosas de Cabeza y Cuello
11.
Bioorg Med Chem Lett ; 24(21): 5081-5, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25288188

RESUMEN

Synthesis and SAR investigation of 2-guanidinoquinazolines, initially identified in a high content screen for selective STAT3 pathway inhibitors, led to a more potent analog (11c) that demonstrated improved anti-proliferative activity against a panel of HNSCC cell lines.


Asunto(s)
Guanidina/química , Quinazolinas/química , Factor de Transcripción STAT3/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Unión Proteica , Quinazolinas/metabolismo , Quinazolinas/toxicidad , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad
12.
J Med Chem ; 57(9): 3666-77, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24684347

RESUMEN

Birinapant (1) is a second-generation bivalent antagonist of IAP proteins that is currently undergoing clinical development for the treatment of cancer. Using a range of assays that evaluated cIAP1 stability and oligomeric state, we demonstrated that 1 stabilized the cIAP1-BUCR (BIR3-UBA-CARD-RING) dimer and promoted autoubiquitylation of cIAP1 in vitro. Smac-mimetic 1-induced loss of cIAPs correlated with inhibition of TNF-mediated NF-κB activation, caspase activation, and tumor cell killing. Many first-generation Smac-mimetics such as compound A (2) were poorly tolerated. Notably, animals that lack functional cIAP1, cIAP2, and XIAP are not viable, and 2 mimicked features of triple IAP knockout cells in vitro. The improved tolerability of 1 was associated with (i) decreased potency against cIAP2 and affinity for XIAP BIR3 and (ii) decreased ability to inhibit XIAP-dependent signaling pathways. The P2' position of 1 was critical to this differential activity, and this improved tolerability has allowed 1 to proceed into clinical studies.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Portadoras/química , Dipéptidos/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , Indoles/farmacología , Proteínas Mitocondriales/química , Imitación Molecular , Neoplasias Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis , Dipéptidos/uso terapéutico , Descubrimiento de Drogas , Indoles/uso terapéutico , Ratones , Modelos Moleculares
13.
Mol Cancer Ther ; 13(4): 867-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24563541

RESUMEN

The acquisition of apoptosis resistance is a fundamental event in cancer development. Among the mechanisms used by cancer cells to evade apoptosis is the dysregulation of inhibitor of apoptosis (IAP) proteins. The activity of the IAPs is regulated by endogenous IAP antagonists such as SMAC (also termed DIABLO). Antagonism of IAP proteins by SMAC occurs via binding of the N-terminal tetrapeptide (AVPI) of SMAC to selected BIR domains of the IAPs. Small molecule compounds that mimic the AVPI motif of SMAC have been designed to overcome IAP-mediated apoptosis resistance of cancer cells. Here, we report the preclinical characterization of birinapant (TL32711), a bivalent SMAC-mimetic compound currently in clinical trials for the treatment of cancer. Birinapant bound to the BIR3 domains of cIAP1, cIAP2, XIAP, and the BIR domain of ML-IAP in vitro and induced the autoubiquitylation and proteasomal degradation of cIAP1 and cIAP2 in intact cells, which resulted in formation of a RIPK1:caspase-8 complex, caspase-8 activation, and induction of tumor cell death. Birinapant preferentially targeted the TRAF2-associated cIAP1 and cIAP2 with subsequent inhibition of TNF-induced NF-κB activation. The activity of a variety of chemotherapeutic cancer drugs was potentiated by birinapant both in a TNF-dependent or TNF-independent manner. Tumor growth in multiple primary patient-derived xenotransplant models was inhibited by birinapant at well-tolerated doses. These results support the therapeutic combination of birinapant with multiple chemotherapies, in particular, those therapies that can induce TNF secretion.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Dipéptidos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Animales , Neoplasias de la Mama/patología , Caspasa 8/metabolismo , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ratones Desnudos , Proteínas Mitocondriales/metabolismo , Receptores del Factor de Necrosis Tumoral , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/metabolismo
14.
Org Lett ; 16(1): 94-7, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24313360

RESUMEN

A radical [3 + 2]-divinylcyclopropane annulation cascade has been extended to encompass five D-ring variants of the meloscine/epimeloscine core structure. Representative ABCD tetracyclic intermediates were further elaborated with novel substituted E-rings through subsequent transformations of advanced intermediates that provided opportunities for late-stage variation of the B-ring (lactam) N-substituents which were also developed.


Asunto(s)
Ciclopropanos/síntesis química , Compuestos Policíclicos/síntesis química , Quinolinas/síntesis química , Ciclización , Ciclopropanos/química , Modelos Moleculares , Estructura Molecular , Compuestos Policíclicos/química , Quinolinas/química
15.
Tetrahedron ; 69(36): 7719-7731, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23976798

RESUMEN

2-Amino-1,4-dihydropyrimidines were reacted with bis-electrophiles to produce novel fused bi-pyrimidine, pyrimido-aminotriazine, and pyrimido-sulfonamide scaffolds. In addition, a quinazoline library was constructed using a guanidine Atwal-Biginelli reaction with 1-(quinazolin-2-yl)guanidines. The product heterocycles have novel constitutions with high nitrogen atom counts and represent valuable additions to screening libraries for the discovery of new modulators of biological targets.

16.
ACS Comb Sci ; 15(7): 344-9, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23731121

RESUMEN

A library of spirooxindoles containing varied elements of structural and stereochemical diversity has been constructed via a three step, one pot nitrile hydrozirconation-acylation-cyclization reaction sequence from common acyclic indole intermediates. The resulting library was evaluated for novelty through comparison with MLSMR and Maybridge compound collections.


Asunto(s)
Indoles/síntesis química , Compuestos de Espiro/síntesis química , Circonio/química , Acilación , Técnicas Químicas Combinatorias , Ciclización , Indoles/química , Nitrilos/química , Compuestos de Espiro/química
17.
Beilstein J Org Chem ; 8: 1048-58, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23019432

RESUMEN

The synthesis of a library of tetrahydro-ß-carboline-containing compounds in milligram quantities is described. Among the unique heterocyclic frameworks are twelve tetrahydroindolizinoindoles, six tetrahydrocyclobutanindoloquinolizinones and three tetrahydrocyclopentenoneindolizinoindolones. These compounds were selected from a virtual combinatorial library of 11,478 compounds. Physical chemical properties were calculated and most of them are in accordance with Lipinski's rules. Virtual docking and ligand-based target evaluations were performed for the ß-carboline library compounds and selected synthetic intermediates to assess the therapeutic potential of these small organic molecules. These compounds have been deposited into the NIH Molecular Repository (MLSMR) and may target proteins such as histone deacetylase 4, endothelial nitric oxide synthase, 5-hydroxytryptamine receptor 6 and mitogen-activated protein kinase 1. These in silico screening results aim to add value to the ß-carboline library of compounds for those interested in probes of these targets.

19.
Molecules ; 16(5): 3648-62, 2011 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-21540794

RESUMEN

Eighteen (2RS,6RS)-2-(4-methoxyphenyl)-6-(substituted ethyl)dihydro-2H-pyran-4(3H)ones were synthesized via a DDQ-mediated oxidative carbon-hydrogen bond activation reaction. Fourteen of these tetrahydropyrans were substituted with triazoles readily assembled via azide-alkyne click-chemistry reactions. Examples of a linked benzotriazole and pyrazole motif were also prepared. To complement the structural diversity, the alcohol substrates were obtained from stereoselective reductions of the tetrahydropyrone. This library provides rapid access to structurally diverse non-natural compounds to be screened against a variety of biological targets.


Asunto(s)
Química Clic/métodos , Piranos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxidación-Reducción , Piranos/síntesis química
20.
Proc Natl Acad Sci U S A ; 108(17): 6757-62, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21502524

RESUMEN

Unique chemical methodology enables the synthesis of innovative and diverse scaffolds and chemotypes and allows access to previously unexplored "chemical space." Compound collections based on such new synthetic methods can provide small-molecule probes of proteins and/or pathways whose functions are not fully understood. We describe the identification, characterization, and evolution of two such probes. In one example, a pathway-based screen for DNA damage checkpoint inhibitors identified a compound, MARPIN (ATM and ATR pathway inhibitor) that sensitizes p53-deficient cells to DNA-damaging agents. Modification of the small molecule and generation of an immobilized probe were used to selectively bind putative protein target(s) responsible for the observed activity. The second example describes a focused library approach that relied on tandem multicomponent reaction methodologies to afford a series of modulators of the heat shock protein 70 (Hsp70) molecular chaperone. The synthesis of libraries based on the structure of MAL3-101 generated a collection of chemotypes, each modulating Hsp70 function, but exhibiting divergent pharmacological activities. For example, probes that compromise the replication of a disease-associated polyomavirus were identified. These projects highlight the importance of chemical methodology development as a source of small-molecule probes and as a drug discovery starting point.


Asunto(s)
Diseño de Fármacos , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Sondas Moleculares , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Sondas Moleculares/farmacología , Poliomavirus/fisiología , Infecciones por Polyomavirus/tratamiento farmacológico , Infecciones por Polyomavirus/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA