Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 989, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256479

RESUMEN

The NEREA (Naples Ecological REsearch for Augmented observatories) initiative aims to establish an augmented observatory in the Gulf of Naples (GoN), designed to advance the understanding of marine ecosystems through a holistic approach. Inspired by the Tara Oceans expedition and building on the scientific legacy of the MareChiara Long-Term Ecological Research (LTER-MC) site, NEREA integrates traditional physical, chemical, and biological measurements with state-of-the-art methodologies such as metabarcoding and metagenomics. Here we present the first 10 months of NEREA data, collected from April 2019 to January 2020, encompassing physico-chemical parameters, plankton biodiversity (e.g., microscopy and flow cytometry), prokaryotic and eukaryotic metabarcoding, a prokaryotic gene catalogue, and a collection of 3818 prokaryotic Metagenome-Assembled Genomes (MAGs). NEREA's efforts produce a significant volume of multifaceted data, which enhances our understanding of marine ecosystems and promotes the development of scientific hypotheses and ideas.


Asunto(s)
Ecosistema , Plancton , Metagenoma , Biodiversidad , Metagenómica
2.
Plant Cell ; 36(10): 4472-4490, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39121028

RESUMEN

Meiotic recombination is a key biological process in plant evolution and breeding, as it generates genetic diversity in each generation through the formation of crossovers (COs). However, due to their importance in genome stability, COs are highly regulated in frequency and distribution. We previously demonstrated that this strict regulation of COs can be modified, both in terms of CO frequency and distribution, in allotriploid Brassica hybrids (2n = 3x = 29; AAC) resulting from a cross between Brassica napus (2n = 4x = 38; AACC) and Brassica rapa (2n = 2x = 20; AA). Using the recently updated B. napus genome now including pericentromeres, we demonstrated that COs occur in these cold regions in allotriploids, as close as 375 kb from the centromere. Reverse transcription quantitative PCR (RT-qPCR) of various meiotic genes indicated that Class I COs are likely involved in the increased recombination frequency observed in allotriploids. We also demonstrated that this modified recombination landscape can be maintained via successive generations of allotriploidy (odd ploidy level). This deregulated meiotic behavior reverts to strict regulation in allotetraploid (even ploidy level) progeny in the second generation. Overall, we provide an easy way to manipulate tight recombination control in a polyploid crop.


Asunto(s)
Brassica napus , Centrómero , Meiosis , Ploidias , Centrómero/genética , Brassica napus/genética , Meiosis/genética , Recombinación Genética/genética , Intercambio Genético , Brassica rapa/genética , Cromosomas de las Plantas/genética
3.
Nat Commun ; 15(1): 773, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316773

RESUMEN

Using long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes. We found the canonical nematode telomeric repeat to be missing in these and other Meloidogyne genomes. In addition, we find no evidence for the enzyme telomerase or for orthologs of C. elegans telomere-associated proteins, suggesting alternative lengthening of telomeres. Instead, analyzing our assembled genomes, we identify species-specific composite repeats enriched mostly at one extremity of contigs. These repeats are G-rich, oriented, and transcribed, similarly to canonical telomeric repeats. We confirm them as telomeric using fluorescent in situ hybridization. These repeats are mostly found at one single end of chromosomes in these species. The discovery of unusual and specific complex telomeric repeats opens a plethora of perspectives and highlights the evolutionary diversity of telomeres despite their central roles in senescence, aging, and chromosome integrity.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Caenorhabditis elegans/genética , Hibridación Fluorescente in Situ , Tylenchoidea/genética , Telómero/genética , Poliploidía
4.
Mol Ecol ; 33(3): e16859, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36748324

RESUMEN

Whole genome characterizations of crop plants based on ancient DNA have provided unique keys for a better understanding of the evolutionary origins of modern cultivars, the pace and mode of selection underlying their adaptation to new environments and the production of phenotypes of interest. Although forests are among the most biologically rich ecosystems on earth and represent a fundamental resource for human societies, no ancient genome sequences have been generated for trees. This contrasts with the generation of multiple ancient reference genomes for important crops. Here, we sequenced the first ancient tree genomes using two white oak wood remains from Germany dating to the Last Little Ice Age (15th century CE, 7.3× and 4.0×) and one from France dating to the Bronze Age (1700 BCE, 3.4×). We assessed the underlying species and identified one medieval remains as a hybrid between two common oak species (Quercus robur and Q. petraea) and the other two remains as Q. robur. We found that diversity at the global genome level had not changed over time. However, exploratory analyses suggested that a reduction of diversity took place at different time periods. Finally, we determined the timing of leaf unfolding for ancient trees for the first time. The study extends the application of ancient wood beyond the classical proxies of dendroclimatology, dendrochronology, dendroarchaeology and dendroecology, thereby enhancing resolution of inferences on the responses of forest ecosystems to past environmental changes, epidemics and silvicultural practices.


Asunto(s)
Quercus , Madera , Humanos , Quercus/genética , Ecosistema , Bosques , Árboles/genética
5.
ISME Commun ; 3(1): 101, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740029

RESUMEN

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic-subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

6.
ISME Commun ; 3(1): 83, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596349

RESUMEN

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.

7.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264002

RESUMEN

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Océano Pacífico , Biodiversidad , Peces , Plancton
8.
Nat Commun ; 14(1): 3056, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264036

RESUMEN

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.


Asunto(s)
Antozoos , Transcriptoma , Animales , Océano Pacífico , Transcriptoma/genética , Antozoos/genética , Aclimatación/genética , Arrecifes de Coral
9.
Sci Data ; 10(1): 326, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264047

RESUMEN

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Biodiversidad , Ecosistema
10.
Genome Biol ; 24(1): 123, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264421

RESUMEN

BACKGROUND: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS: At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Ecosistema , Arrecifes de Coral
11.
Ann Bot ; 131(7): 1149-1161, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267450

RESUMEN

BACKGROUND AND AIMS: Cultivated bananas resulted from inter(sub)specific hybridizations involving Musa species and subspecies (M. acuminata subspecies, M. schizocarpa, M. balbisiana) and the subsequent selection, centuries ago, of hybrids with parthenocarpic, seedless fruits. Cultivars have low fertility and are vegetatively propagated, forming groups of somaclones. Relatively few of them, mainly triploids, are grown on a large scale and characterization of their parental relationships may be useful for breeding strategies. Here we investigate parental relationships and gamete-type contributions among diploid and polyploid banana cultivars. METHODS: We used SNP genotyping data from whole-genome sequencing of 178 banana individuals, including 111 cultivars, 55 wild bananas and 12 synthetic F1 hybrids. We analysed the proportion of SNP sites in accordance with direct parentage with a global statistic and along chromosomes for selected individuals. KEY RESULTS: We characterized parentage relationships for 7 diploid cultivars, 11 triploid cultivars and 1 tetraploid cultivar. Results showed that both diploid and triploid cultivars could have contributed gametes to other banana cultivars. Diploids may have contributed 1x or 2x gametes and triploids 1x to 3x gametes. The Mchare diploid cultivar group, nowadays only found in East Africa, was found as parent of two diploid and eight triploid cultivars. In five of its identified triploid offspring, corresponding to main export or locally popular dessert bananas, Mchare contributed a 2x gamete with full genome restitution without recombination. Analyses of remaining haplotypes in these Mchare offspring suggested ancestral pedigree relationships between different interspecific banana cultivars. CONCLUSIONS: The current cultivated banana resulted from different pathways of formation, with implication of recombined or un-recombined unreduced gametes produced by diploid or triploid cultivars. Identification of dessert banana's parents and the types of gametes they contributed should support the design of breeding strategies.


Asunto(s)
Musa , Triploidía , Musa/genética , Diploidia , Hibridación Genética , Células Germinativas
12.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37154524

RESUMEN

Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology.


Asunto(s)
Duplicación de Gen , Paramecium , Animales , Paramecium/genética , Genoma , Dosificación de Gen , Vertebrados/genética , Evolución Molecular , Filogenia
13.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082140

RESUMEN

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

14.
BMC Plant Biol ; 23(1): 108, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36814198

RESUMEN

BACKGROUND: Global warming raises serious concerns about the persistence of species and populations locally adapted to their environment, simply because of the shift it produces in their adaptive landscape. For instance, the phenological cycle of tree species may be strongly affected by higher winter temperatures and late frost in spring. Given the variety of ecosystem services they provide, the question of forest tree adaptation has received increasing attention in the scientific community and catalyzed research efforts in ecology, evolutionary biology and functional genomics to study their adaptive capacity to respond to such perturbations. RESULTS: In the present study, we used an elevation gradient in the Pyrenees Mountains to explore the gene expression network underlying dormancy regulation in natural populations of sessile oak stands sampled along an elevation cline and potentially adapted to different climatic conditions mainly driven by temperature. By performing analyses of gene expression in terminal buds we identified genes displaying significant dormancy, elevation or dormancy-by-elevation interaction effects. Our Results highlighted that low- and high-altitude populations have evolved different molecular strategies for minimizing late frost damage and maximizing the growth period, thereby increasing potentially their respective fitness in these contrasting environmental conditions. More particularly, population from high elevation overexpressed genes involved in the inhibition of cell elongation and delaying flowering time while genes involved in cell division and flowering, enabling buds to flush earlier were identified in population from low elevation. CONCLUSION: Our study made it possible to identify key dormancy-by-elevation responsive genes revealing that the stands analyzed in this study have evolved distinct molecular strategies to adapt their bud phenology in response to temperature.


Asunto(s)
Quercus , Quercus/genética , Ecosistema , Temperatura , Estaciones del Año , Bosques , Árboles
15.
Plant J ; 113(4): 802-818, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575919

RESUMEN

Hybridizations between Musa species and subspecies, enabled by their transport via human migration, were proposed to have played an important role in banana domestication. We exploited sequencing data of 226 Musaceae accessions, including wild and cultivated accessions, to characterize the inter(sub)specific hybridization pattern that gave rise to cultivated bananas. We identified 11 genetic pools that contributed to cultivars, including two contributors of unknown origin. Informative alleles for each of these genetic pools were pinpointed and used to obtain genome ancestry mosaics of accessions. Diploid and triploid cultivars had genome mosaics involving three up to possibly seven contributors. The simplest mosaics were found for some diploid cultivars from New Guinea, combining three contributors, i.e., banksii and zebrina representing Musa acuminata subspecies and, more unexpectedly, the New Guinean species Musa schizocarpa. Breakpoints of M. schizocarpa introgressions were found to be conserved between New Guinea cultivars and the other analyzed diploid and triploid cultivars. This suggests that plants bearing these M. schizocarpa introgressions were transported from New Guinea and gave rise to currently cultivated bananas. Many cultivars showed contrasted mosaics with predominant ancestry from their geographical origin across Southeast Asia to New Guinea. This revealed that further diversification occurred in different Southeast Asian regions through hybridization with other Musa (sub)species, including two unknown ancestors that we propose to be M. acuminata ssp. halabanensis and a yet to be characterized M. acuminata subspecies. These results highlighted a dynamic crop formation process that was initiated in New Guinea, with subsequent diversification throughout Southeast Asia.


Asunto(s)
Genoma de Planta , Musa , Humanos , Genoma de Planta/genética , Musa/genética , Nueva Guinea , Triploidía , Hibridación Genética
16.
Commun Biol ; 5(1): 983, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114260

RESUMEN

The smallest phytoplankton species are key actors in oceans biogeochemical cycling and their abundance and distribution are affected with global environmental changes. Among them, algae of the Pelagophyceae class encompass coastal species causative of harmful algal blooms while others are cosmopolitan and abundant. The lack of genomic reference in this lineage is a main limitation to study its ecological importance. Here, we analysed Pelagomonas calceolata relative abundance, ecological niche and potential for the adaptation in all oceans using a complete chromosome-scale assembled genome sequence. Our results show that P. calceolata is one of the most abundant eukaryotic species in the oceans with a relative abundance favoured by high temperature, low-light and iron-poor conditions. Climate change projections based on its relative abundance suggest an extension of the P. calceolata habitat toward the poles at the end of this century. Finally, we observed a specific gene repertoire and expression level variations potentially explaining its ecological success in low-iron and low-nitrate environments. Collectively, these findings reveal the ecological importance of P. calceolata and lay the foundation for a global scale analysis of the adaptation and acclimation strategies of this small phytoplankton in a changing environment.


Asunto(s)
Hierro , Estramenopilos , Aclimatación/genética , Cromosomas , Genómica , Hierro/metabolismo , Nitratos/metabolismo , Océanos y Mares , Fitoplancton/genética , Fitoplancton/metabolismo , Estramenopilos/genética
17.
Plant Physiol ; 190(4): 2466-2483, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36066428

RESUMEN

Drought and waterlogging impede tree growth and may even lead to tree death. Oaks, an emblematic group of tree species, have evolved a range of adaptations to cope with these constraints. The two most widely distributed European species, pedunculate (PO; Quercus robur L.) and sessile oak (SO; Quercus petraea Matt. Lieb), have overlapping ranges, but their respective distribution are highly constrained by local soil conditions. These contrasting ecological preferences between two closely related and frequently hybridizing species constitute a powerful model to explore the functional bases of the adaptive responses in oak. We exposed oak seedlings to waterlogging and drought, conditions typically encountered by the two species in their respective habitats, and studied changes in gene expression in roots using RNA-seq. We identified genes that change in expression between treatments differentially depending on species. These "species × environment"-responsive genes revealed adaptive molecular strategies involving adventitious and lateral root formation, aerenchyma formation in PO, and osmoregulation and ABA regulation in SO. With this experimental design, we also identified genes with different expression between species independently of water conditions imposed. Surprisingly, this category included genes with functions consistent with a role in intrinsic reproductive barriers. Finally, we compared our findings with those for a genome scan of species divergence and found that the expressional candidate genes included numerous highly differentiated genetic markers between the two species. By combining transcriptomic analysis, gene annotation, pathway analyses, as well as genome scan for genetic differentiation among species, we were able to highlight loci likely involved in adaptation of the two species to their respective ecological niches.


Asunto(s)
Quercus , Quercus/genética , Agua/metabolismo , Suelo , Árboles/metabolismo , Expresión Génica
18.
Elife ; 112022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920817

RESUMEN

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.


Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These 'marine plankton' are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth's oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.


Asunto(s)
Ecosistema , Plancton , Genómica , Geografía , Océanos y Mares , Plancton/genética
20.
Science ; 376(6598): 1202-1208, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679415

RESUMEN

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.


Asunto(s)
Plancton , Virus ARN , Agua de Mar , Viroma , Ciclo del Carbono , Ecosistema , Océanos y Mares , Plancton/clasificación , Plancton/metabolismo , Plancton/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Agua de Mar/virología , Viroma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...