Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(2): 704-724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263327

RESUMEN

TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.


Asunto(s)
Autofagia , Inflamación , Humanos , Inflamación/metabolismo , Citosol/metabolismo , Transporte Activo de Núcleo Celular , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasas ATP-Dependientes/metabolismo
2.
Nat Aging ; 3(12): 1544-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957359

RESUMEN

Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.


Asunto(s)
Fragilidad , Longevidad , Animales , Humanos , Longevidad/genética , Proteínas Quinasas Activadas por AMP/genética , Envejecimiento/genética , Peces/metabolismo
3.
Rheumatology (Oxford) ; 62(10): 3459-3468, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752501

RESUMEN

OBJECTIVE: We describe a family with a novel mutation in the TNF Receptor Superfamily Member 1A (TNFRSF1A) gene causing TNF receptor-associated periodic syndrome (TRAPS) with renal AA amyloidosis. METHODS: Case series of affected family members. We further investigated the plasma metabolome of these patients in comparison with healthy controls using mass spectrometry. RESULTS: In all symptomatic family members, we detected the previously undescribed variant c.332A>G (p.Q111R) in the TNFRSF1A gene. Canakinumab proved an effective treatment option leading to remission in all treated patients. One patient with suspected renal amyloidosis showed near normalization of proteinuria under treatment. Analysis of the metabolome revealed 31 metabolic compounds to be upregulated and 35 compounds to be downregulated compared with healthy controls. The most dysregulated metabolites belonged to pathways identified as arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and cysteine and methionine metabolism. Interestingly, the metabolic changes observed in all three TRAPS patients seemed independent of treatment with canakinumab and subsequent remission. CONCLUSION: We present a novel mutation in the TNFRSF1A gene associated with amyloidosis. Canakinumab is an effective treatment for individuals with this new likely pathogenic variant. Alterations in the metabolome were most prominent in the pathways related to arginine biosynthesis, tryptophan metabolism, and metabolism of cysteine and methionine, and seemed to be unaffected by treatment with canakinumab. Further investigation is needed to determine the role of these metabolomic changes in the pathophysiology of TRAPS.


Asunto(s)
Amiloidosis , Fiebre Mediterránea Familiar , Humanos , Receptores del Factor de Necrosis Tumoral , Fiebre Mediterránea Familiar/tratamiento farmacológico , Fiebre Mediterránea Familiar/genética , Fiebre Mediterránea Familiar/complicaciones , Cisteína/genética , Triptófano , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Amiloidosis/complicaciones , Mutación , Metionina , Arginina
4.
Elife ; 102021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34311841

RESUMEN

Muscle function relies on the precise architecture of dynamic contractile elements, which must be fine-tuned to maintain motility throughout life. Muscle is also plastic, and remodeled in response to stress, growth, neural and metabolic inputs. The conserved muscle-enriched microRNA, miR-1, regulates distinct aspects of muscle development, but whether it plays a role during aging is unknown. Here we investigated Caenorhabditis elegans miR-1 in muscle function in response to proteostatic stress. mir-1 deletion improved mid-life muscle motility, pharyngeal pumping, and organismal longevity upon polyQ35 proteotoxic challenge. We identified multiple vacuolar ATPase subunits as subject to miR-1 control, and the regulatory subunit vha-13/ATP6V1A as a direct target downregulated via its 3'UTR to mediate miR-1 physiology. miR-1 further regulates nuclear localization of lysosomal biogenesis factor HLH-30/TFEB and lysosomal acidification. Our studies reveal that miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact muscle function and health during aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , MicroARNs/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Núcleo Celular , Longevidad/genética , Músculos/metabolismo , Mutación/genética
5.
Nat Metab ; 2(5): 387-396, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32694663

RESUMEN

Mitochondria are multidimensional organelles whose activities are essential to cellular vitality and organismal longevity, yet underlying regulatory mechanisms spanning these different levels of organization remain elusive1-5. Here we show that Caenorhabditis elegans nuclear transcription factor Y, beta subunit (NFYB-1), a subunit of the NF-Y transcriptional complex6-8, is a crucial regulator of mitochondrial function. Identified in RNA interference (RNAi) screens, NFYB-1 loss leads to perturbed mitochondrial gene expression, reduced oxygen consumption, mitochondrial fragmentation, disruption of mitochondrial stress pathways, decreased mitochondrial cardiolipin levels and abolition of organismal longevity triggered by mitochondrial impairment. Multi-omics analysis reveals that NFYB-1 is a potent repressor of lysosomal prosaposin, a regulator of glycosphingolipid metabolism. Limiting prosaposin expression unexpectedly restores cardiolipin production, mitochondrial function and longevity in the nfyb-1 background. Similarly, cardiolipin supplementation rescues nfyb-1 phenotypes. These findings suggest that the NFYB-1-prosaposin axis coordinates lysosomal to mitochondria signalling via lipid pools to enhance cellular mitochondrial function and organismal health.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Lisosomas/metabolismo , Mitocondrias/fisiología , Animales , Cardiolipinas/metabolismo , Cardiolipinas/farmacología , Ceramidas/farmacología , Regulación de la Expresión Génica , Lipidómica , Longevidad/genética , Consumo de Oxígeno , Proteómica , Interferencia de ARN
6.
Cell Metab ; 26(6): 884-896.e5, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29107506

RESUMEN

Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles, and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C. elegans via maintaining mitochondrial network homeostasis and functional coordination with peroxisomes to increase fatty acid oxidation (FAO). Inhibiting fusion or fission specifically blocks AMPK- and DR-mediated longevity. Strikingly, however, preserving mitochondrial network homeostasis during aging by co-inhibition of fusion and fission is sufficient itself to increase lifespan, while dynamic network remodeling is required for intermittent fasting-mediated longevity. Finally, we show that increasing lifespan via maintaining mitochondrial network homeostasis requires FAO and peroxisomal function. Together, these data demonstrate that mechanisms that promote mitochondrial homeostasis and plasticity can be targeted to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Restricción Calórica , Longevidad , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Envejecimiento , Animales , Línea Celular , Ácidos Grasos/metabolismo , Metabolómica , Ratones , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Modelos Animales
7.
Aging (Albany NY) ; 8(12): 3255-3271, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27922823

RESUMEN

In most eukaryotic cells mitochondria are essential organelles involved in a great variety of cellular functions. One of the physiological processes linked to mitochondria is aging, a gradual process of damage accumulation that eventually promotes cell death. Aging depends on a balance between mitochondrial biogenesis, function and degradation. It has been previously shown that Tor1, Sch9 and Ras2 are activated in response to nutrient availability and regulate cell growth and division. A deficiency in any of these genes promotes lifespan extension and cell protection during oxidative and heat shock stress. In this work we report that in Saccharomyces cerevisiae, the uncharacterized mitochondrial protein Slm35 is functionally linked with the TOR signaling pathway. A Δtor1Δslm35 strain shows a severe decrease in lifespan and is unable to contend with oxidative and heat shock stresses. Specifically, this mutant shows decreased catalase activity indicating a misregulation of ROS scavenging mechanisms. In this study we show that Slm35 is also relevant for mitochondrial network dynamics and mitophagy. The results presented here suggest that Slm35 plays an important role connecting mitochondrial function with cytosolic responses and cell adaptation to stress and aging.


Asunto(s)
Longevidad/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/fisiología , Regulación Fúngica de la Expresión Génica , Calor , Proteínas Mitocondriales/genética , Oxidación-Reducción , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...