Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Cell Stem Cell ; 22(5): 755-768.e6, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681515

RESUMEN

Asymmetrically dividing muscle stem cells in skeletal muscle give rise to committed cells, where the myogenic determination factor Myf5 is transcriptionally activated by Pax7. This activation is dependent on Carm1, which methylates Pax7 on multiple arginine residues, to recruit the ASH2L:MLL1/2:WDR5:RBBP5 histone methyltransferase complex to the proximal promoter of Myf5. Here, we found that Carm1 is a specific substrate of p38γ/MAPK12 and that phosphorylation of Carm1 prevents its nuclear translocation. Basal localization of the p38γ/p-Carm1 complex in muscle stem cells occurs via binding to the dystrophin-glycoprotein complex (DGC) through ß1-syntrophin. In dystrophin-deficient muscle stem cells undergoing asymmetric division, p38γ/ß1-syntrophin interactions are abrogated, resulting in enhanced Carm1 phosphorylation. The resulting progenitors exhibit reduced Carm1 binding to Pax7, reduced H3K4-methylation of chromatin, and reduced transcription of Myf5 and other Pax7 target genes. Therefore, our experiments suggest that dysregulation of p38γ/Carm1 results in altered epigenetic gene regulation in Duchenne muscular dystrophy.


Asunto(s)
Epigénesis Genética , Músculo Esquelético/citología , Factor 5 Regulador Miogénico/metabolismo , Factor de Transcripción PAX7/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Células Madre/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos , Músculo Esquelético/metabolismo , Factor 5 Regulador Miogénico/genética , Factor de Transcripción PAX7/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
4.
Cancer Genet ; 216-217: 100-104, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29025583

RESUMEN

Lipoma is a benign tumor, typically of adulthood, with characteristic cytogenetic findings, including rearrangement of 12q13-15; these rearrangements often lead to the fusion of the HMGA2 gene at this locus to the transcriptional regulatory domain of its fusion partner, resulting in neomorphic activity that presumably facilitates the neoplastic process. Herein, we report a rare case of pediatric lipoma with t(9;12)(p22;q14) and evidence of HMGA2-NFIB gene fusion in a 9 year-old boy. This case provides further evidence of the link between NFIB rearrangement and early-onset, deep-seated lipomatous tumors.


Asunto(s)
Cromosomas Humanos/genética , Proteína HMGA2/genética , Lipoma/genética , Factores de Transcripción NFI/genética , Proteínas de Fusión Oncogénica/genética , Translocación Genética , Adulto , Niño , Preescolar , Humanos , Cariotipificación , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
5.
Am J Med Genet A ; 173(6): 1611-1619, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432728

RESUMEN

Distal deletion of the long arm of chromosome 10 is associated with a dysmorphic craniofacial appearance, microcephaly, behavioral issues, developmental delay, intellectual disability, and ocular, urogenital, and limb abnormalities. Herein, we present clinical, molecular, and cytogenetic investigations of four patients, including two siblings, with nearly identical terminal deletions of 10q26.3, all of whom have an atypical presentation of this syndrome. Their prominent features include ataxia, mild-to-moderate intellectual disability, and hyperemia of the hands and feet, and they do not display many of the other features commonly associated with deletions of this region. These results point to a novel gene locus associated with ataxia and highlight the variability of the clinical presentation of patients with deletions of this region.


Asunto(s)
Ataxia/fisiopatología , Discapacidades del Desarrollo/fisiopatología , Hiperemia/fisiopatología , Discapacidad Intelectual/fisiopatología , Adolescente , Ataxia/diagnóstico por imagen , Ataxia/genética , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 10/genética , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Femenino , Mano/fisiopatología , Humanos , Hiperemia/diagnóstico por imagen , Hiperemia/genética , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Hermanos
6.
Cell Rep ; 16(2): 333-343, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27346341

RESUMEN

Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.


Asunto(s)
Adipogénesis , Factor de Transcripción PAX7/genética , Células Satélite del Músculo Esquelético/fisiología , Transducción de Señal , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/fisiología , Animales , Células Cultivadas , Ratones Transgénicos , Proteína MioD/metabolismo , Factor de Transcripción PAX7/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
7.
Adipocyte ; 2(1): 55-57, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23700554

RESUMEN

A contribution of structural genomic variation to the heritability of complex metabolic phenotypes was illuminated by the recent characterization of chromosome-engineered mouse models for genomic disorders associated with metabolic dysfunction. Herein we discuss our study, "A duplication CNV that conveys traits reciprocal to metabolic syndrome and protects against diet-induced obesity in mice and men," which describes the opposing metabolic phenotypes of mouse models for two prototypical genomic disorders,1,2 Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS). SMS and PTLS are caused by reciprocal deletion or duplication copy number variations (CNVs), respectively, on chromosome 17p11.2. The implications of the results of this study and the potential relevance of these findings for future studies in the field of metabolism are discussed.

8.
Am J Med Genet A ; 161A(7): 1561-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23703963

RESUMEN

Smith-Magenis syndrome (SMS; OMIM 182290) is a genomic disorder characterized by multiple congenital anomalies, intellectual disability, behavioral abnormalities, and disordered sleep resulting from an ~3.7 Mb deletion copy number variant (CNV) on chromosome 17p11.2 or from point mutations in the gene RAI1. The reciprocal duplication of this region results in another genomic disorder, Potocki-Lupski syndrome (PTLS; OMIM 610883), characterized by autism, intellectual disability, and congenital anomalies. We previously used chromosome-engineering and gene targeting to generate mouse models for PTLS (Dp(11)17/+), and SMS due to either deletion CNV or gene knock-out (Df(11)17-2/+ and Rai1(+/-) , respectively) and we observed phenotypes in these mouse models consistent with their associated human syndromes. To investigate the contribution of individual genes to the circadian phenotypes observed in SMS, we now report the analysis of free-running period lengths in Rai1(+/-) and Df(11)17-2/+ mice, as well as in mice deficient for another known circadian gene mapping within the commonly deleted/duplicated region, Dexras1, and we compare these results to those previously observed in Dp(11)17/+ mice. Reduced free-running period lengths were seen in Df(11)17-2/+, Rai1(+/-) , and Dexras1(-/-) , but not Dexras1(+/-) mice, suggesting that Rai1 may be the primary gene underlying the circadian defects in SMS. However, we cannot rule out the possibility that cis effects between multiple haploinsufficient genes in the SMS critical interval (e.g., RAI1 and DEXRAS1) either exacerbate the circadian phenotypes observed in SMS patients with deletions or increase their penetrance in certain environments. This study also confirms a previous report of abnormal circadian function in Dexras1(-/-) mice.


Asunto(s)
Trastornos Cronobiológicos/genética , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Noqueados , Carrera , Proteínas ras/genética
9.
Am J Med Genet A ; 158A(11): 2807-14, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22991245

RESUMEN

A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.


Asunto(s)
Dosificación de Gen , Fenotipo , Síndrome de Smith-Magenis/genética , Anomalías Múltiples , Animales , Conducta Animal , Trastornos de los Cromosomas , Duplicación Cromosómica , Modelos Animales de Enfermedad , Ingestión de Líquidos , Estudios de Asociación Genética , Ratones
10.
PLoS Genet ; 8(5): e1002713, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654670

RESUMEN

The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration. Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome (SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome. Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features distinct from most SNP-associated metabolic traits and further highlight the potential importance of CNV in the etiology of both obesity and MetS as well as in the protection from these traits.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Obesidad , Síndrome de Smith-Magenis , Transactivadores/metabolismo , Anomalías Múltiples , Animales , Peso Corporal , Deleción Cromosómica , Trastornos de los Cromosomas , Duplicación Cromosómica , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Haploinsuficiencia , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transactivadores/genética
11.
Hum Mol Genet ; 21(14): 3083-96, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22492990

RESUMEN

Potocki-Lupski syndrome (PTLS; MIM #610883), characterized by neurobehavioral abnormalities, intellectual disability and congenital anomalies, is caused by a 3.7-Mb duplication in 17p11.2. Neurobehavioral studies determined that ∼70-90% of PTLS subjects tested positive for autism or autism spectrum disorder (ASD). We previously chromosomally engineered a mouse model for PTLS (Dp(11)17/+) with a duplication of a 2-Mb genomic interval syntenic to the PTLS region and identified consistent behavioral abnormalities in this mouse model. We now report extensive phenotyping with behavioral assays established to evaluate core and associated autistic-like traits, including tests for social abnormalities, ultrasonic vocalizations, perseverative and stereotypic behaviors, anxiety, learning and memory deficits and motor defects. Alterations were identified in both core and associated ASD-like traits. Rearing this animal model in an enriched environment mitigated some, and even rescued selected, neurobehavioral abnormalities, suggesting a role for gene-environment interactions in the determination of copy number variation-mediated autism severity.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/psicología , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Síndrome de Smith-Magenis/psicología , Anomalías Múltiples , Animales , Trastorno Autístico/genética , Conducta Animal , Crianza del Niño , Preescolar , Trastornos de los Cromosomas , Duplicación Cromosómica , Femenino , Interacción Gen-Ambiente , Humanos , Aprendizaje , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Síndrome de Smith-Magenis/genética
12.
Am J Hum Genet ; 89(4): 580-8, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981782

RESUMEN

Genomic disorders constitute a class of diseases that are associated with DNA rearrangements resulting from region-specific genome instability, that is, genome architecture incites genome instability. Nonallelic homologous recombination (NAHR) or crossing-over in meiosis between sequences that are not in allelic positions (i.e., paralogous sequences) can result in recurrent deletions or duplications causing genomic disorders. Previous studies of NAHR have focused on description of the phenomenon, but it remains unclear how NAHR occurs during meiosis and what factors determine its frequency. Here we assembled two patient cohorts with reciprocal genomic disorders; deletion associated Smith-Magenis syndrome and duplication associated Potocki-Lupski syndrome. By assessing the full spectrum of rearrangement types from the two cohorts, we find that complex rearrangements (those with more than one breakpoint) are more prevalent in copy-number gains (17.7%) than in copy-number losses (2.3%); an observation that supports a role for replicative mechanisms in complex rearrangement formation. Interestingly, for NAHR-mediated recurrent rearrangements, we show that crossover frequency is positively associated with the flanking low-copy repeat (LCR) length and inversely influenced by the inter-LCR distance. To explain this, we propose that the probability of ectopic chromosome synapsis increases with increased LCR length, and that ectopic synapsis is a necessary precursor to ectopic crossing-over.


Asunto(s)
Emparejamiento Cromosómico , Intercambio Genético , Recombinación Homóloga , Anomalías Múltiples , Alelos , Secuencia de Bases , Trastornos de los Cromosomas , Duplicación Cromosómica , Cromosomas Humanos Par 17/ultraestructura , Estudios de Cohortes , Hibridación Genómica Comparativa , Eliminación de Gen , Dosificación de Gen , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Oligonucleótidos/genética , Recombinación Genética , Síndrome de Smith-Magenis/genética , Transactivadores , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...