Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nucleic Acids Res ; 52(11): 6201-6219, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38597673

RESUMEN

Genes encoding the KDM5 family of transcriptional regulators are disrupted in individuals with intellectual disability (ID). To understand the link between KDM5 and ID, we characterized five Drosophila strains harboring missense alleles analogous to those observed in patients. These alleles disrupted neuroanatomical development, cognition and other behaviors, and displayed a transcriptional signature characterized by the downregulation of many ribosomal protein genes. A similar transcriptional profile was observed in KDM5C knockout iPSC-induced human glutamatergic neurons, suggesting an evolutionarily conserved role for KDM5 proteins in regulating this class of gene. In Drosophila, reducing KDM5 changed neuronal ribosome composition, lowered the translation efficiency of mRNAs required for mitochondrial function, and altered mitochondrial metabolism. These data highlight the cellular consequences of altered KDM5-regulated transcriptional programs that could contribute to cognitive and behavioral phenotypes. Moreover, they suggest that KDM5 may be part of a broader network of proteins that influence cognition by regulating protein synthesis.


Asunto(s)
Proteínas de Drosophila , Neuronas , Proteínas Ribosómicas , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Neuronas/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Activación Transcripcional
2.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808768

RESUMEN

About 100 genes have been associated with significantly increased risks of autism spectrum disorders (ASD) with an estimate of ~1000 genes that may be involved. The new challenge now is to investigate the molecular and cellular functions of these genes during neural and brain development, and then even more challenging, to link the altered molecular and cellular phenotypes to the ASD clinical manifestations. In this study, we use single cell RNA-seq analysis to study one of the top risk gene, CHD8, in cerebral organoids, which models early neural development. We identify 21 cell clusters in the organoid samples, representing non-neuronal cells, neural progenitors, and early differentiating neurons at the start of neural cell fate commitment. Comparisons of the cells with one copy of the CHD8 knockout and their isogenic controls uncover thousands of differentially expressed genes, which are enriched with function related to neural and brain development, with genes and pathways previously implicated in ASD, but surprisingly not for Schizophrenia and intellectual disability risk genes. The comparisons also find cell composition changes, indicating potential altered neural differential trajectories upon CHD8 reduction. Moreover, we find that cell-cell communications are affected in the CHD8 knockout organoids, including the interactions between neural and glial cells. Taken together, our results provide new data for understanding CHD8 functions in the early stages of neural lineage development and interaction.

3.
Dev Neurosci ; 45(6): 361-374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742615

RESUMEN

Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.


Asunto(s)
Corea , Trastorno Obsesivo Compulsivo , Infecciones Estreptocócicas , Animales , Niño , Humanos , Autoinmunidad , Corea/diagnóstico , Corea/complicaciones , Enfermedades Neuroinflamatorias , Infecciones Estreptocócicas/complicaciones , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/tratamiento farmacológico , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/psicología , Autoanticuerpos/uso terapéutico , Inflamación
4.
bioRxiv ; 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37461463

RESUMEN

Background: Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods: To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results: One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations: Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions: Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.

5.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183572

RESUMEN

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adulto , Niño , Femenino , Humanos , Lactante , Masculino , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Fosfatasa 2C/genética , Estudios Retrospectivos , Vómitos , Preescolar , Adolescente , Adulto Joven , Persona de Mediana Edad
6.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36869225

RESUMEN

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Asunto(s)
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Joven , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilación de la Expresión Génica , Secuenciación Completa del Genoma
8.
Sci Rep ; 12(1): 11106, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773312

RESUMEN

Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.


Asunto(s)
Trastorno del Espectro Autista , Enfermedades Autoinmunes , Trastorno Obsesivo Compulsivo , Infecciones Estreptocócicas , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Enfermedades Autoinmunes/diagnóstico , Niño , Exoma/genética , Proteínas de Homeodominio , Humanos , Trastorno Obsesivo Compulsivo/diagnóstico , Infecciones Estreptocócicas/complicaciones , Secuenciación del Exoma , Secuenciación Completa del Genoma
9.
J Neurodev Disord ; 14(1): 29, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501678

RESUMEN

BACKGROUND: Autism spectrum disorder is a neurodevelopmental disorder, affecting 1-2% of children. Studies have revealed genetic and cellular abnormalities in the brains of affected individuals, leading to both regional and distal cell communication deficits. METHODS: Recent application of single-cell technologies, especially single-cell transcriptomics, has significantly expanded our understanding of brain cell heterogeneity and further demonstrated that multiple cell types and brain layers or regions are perturbed in autism. The underlying high-dimensional single-cell data provides opportunities for multilevel computational analysis that collectively can better deconvolute the molecular and cellular events altered in autism. Here, we apply advanced computation and pattern recognition approaches on single-cell RNA-seq data to infer and compare inter-cell-type signaling communications in autism brains and controls. RESULTS: Our results indicate that at a global level, there are cell-cell communication differences in autism in comparison with controls, largely involving neurons as both signaling senders and receivers, but glia also contribute to the communication disruption. Although the magnitude of changes is moderate, we find that excitatory and inhibitor neurons are involved in multiple intercellular signaling that exhibits increased strengths in autism, such as NRXN and CNTN signaling. Not all genes in the intercellular signaling pathways show differential expression, but genes in the affected pathways are enriched for axon guidance, synapse organization, neuron migration, and other critical cellular functions. Furthermore, those genes are highly connected to and enriched for genes previously associated with autism risks. CONCLUSIONS: Overall, our proof-of-principle computational study using single-cell data uncovers key intercellular signaling pathways that are potentially disrupted in the autism brains, suggesting that more studies examining cross-cell type effects can be valuable for understanding autism pathogenesis.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/patología , Trastorno Autístico/genética , Encéfalo/patología , Comunicación Celular , Niño , Humanos , Transcriptoma
10.
Environ Health Perspect ; 129(7): 77001, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259569

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components. Mechanisms of gene-environment (G×E) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G×E) interactions. OBJECTIVES: In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase DNA binding protein 8 (CHD8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-dimensional (3D) brain model. METHODS: This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivating mutation in CHD8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements. RESULTS: Expression of CHD8 protein was significantly lower in CHD8 heterozygous knockout (CHD8+/-) BrainSpheres compared with CHD8+/+ ones. Exposure to CPF/CPO treatment further reduced CHD8 protein levels, showing the potential (G×E) interaction synergy. A novel approach for validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryptophan, kynurenic acid, and α-hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHD8 in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine. DISCUSSION: This study pioneered (G×E) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased susceptibility of CHD8+/- BrainSpheres to chemical insult establishes a possibly broader role of (G×E) interaction in ASD. https://doi.org/10.1289/EHP8580.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cloropirifos , Células Madre Pluripotentes Inducidas , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/genética , Trastorno Autístico/etiología , Cloropirifos/toxicidad , Proteínas de Unión al ADN/genética , Interacción Gen-Ambiente , Humanos , Factores de Transcripción
11.
J Neurodev Disord ; 12(1): 14, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393163

RESUMEN

BACKGROUND: Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3' end of the gene, and their neurotypical brothers to serve as controls. METHODS: In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs). RESULTS: In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon development, pallium development, NPC proliferation, and cortex development, which are consistent with a condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g., AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate gene for glaucoma and other eye pathologies. CONCLUSION: Overall, the RNA-seq findings present several candidate genes that could help explain the underlying basis for the neurodevelopmental and eye problems seen in boys with LS.


Asunto(s)
Oftalmopatías/genética , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Síndrome Oculocerebrorrenal/genética , Adolescente , Adulto , Catarata/genética , Células Cultivadas , Niño , Endosomas/metabolismo , Proteínas de la Matriz Extracelular/genética , Glaucoma/genética , Humanos , Masculino , Mutación , Síndrome Oculocerebrorrenal/metabolismo , Síndrome Oculocerebrorrenal/fisiopatología , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Reelina , Análisis de Secuencia de ARN , Adulto Joven
12.
Transl Psychiatry ; 9(1): 302, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740674

RESUMEN

Schizophrenia (SZ) is a highly heterogeneous disorder in both its symptoms and risk factors. One of the most prevalent genetic risk factors for SZ is the hemizygous microdeletion at chromosome 22q11.2 (22q11DS) that confers a 25-fold increased risk. Six of the genes directly disrupted in 22qDS encode for mitochondrial-localizing proteins. Here, we test the hypothesis that stem cell-derived neurons from subjects with the 22q11DS and SZ have mitochondrial deficits relative to typically developing controls. Human iPSCs from four lines of affected subjects and five lines of controls were differentiated into forebrain-like excitatory neurons. In the patient group, we find significant reductions of ATP levels that appear to be secondary to reduced activity in oxidative phosphorylation complexes I and IV. Protein products of mitochondrial-encoded genes are also reduced. As one of the genes deleted in the 22q11.2 region is MRPL40, a component of the mitochondrial ribosome, we generated a heterozygous mutation of MRPL40 in a healthy control iPSC line. Relative to its isogenic control, this line shows similar deficits in mitochondrial DNA-encoded proteins, ATP level, and complex I and IV activity. These results suggest that in the 22q11DS MRPL40 heterozygosity leads to reduced mitochondria ATP production secondary to altered mitochondrial protein levels. Such defects could have profound effects on neuronal function in vivo.


Asunto(s)
Síndrome de DiGeorge/genética , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/patología , Neuronas/patología , Ribonucleoproteínas/genética , Proteínas Ribosómicas/genética , Esquizofrenia/genética , Animales , Línea Celular , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/patología , Síndrome de DiGeorge/fisiopatología , Humanos , Ratas , Ratas Sprague-Dawley , Esquizofrenia/patología , Esquizofrenia/fisiopatología
13.
Mol Autism ; 9: 44, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147856

RESUMEN

Background: Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods: We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results: We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions: Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features.


Asunto(s)
Actinas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Neuronas/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Adolescente , Adulto , Células Cultivadas , Humanos , Masculino , Polimerizacion , Adulto Joven
14.
Transl Psychiatry ; 8(1): 13, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29317598

RESUMEN

Autism spectrum disorder (ASD) is highly heritable but genetically heterogeneous. The affected neural circuits and cell types remain unclear and may vary at different developmental stages. By analyzing multiple sets of human single cell transcriptome profiles, we found that ASD candidates showed relatively enriched gene expression in neurons, especially in inhibitory neurons. ASD candidates were also more likely to be the hubs of the co-expression gene module that is highly expressed in inhibitory neurons, a feature not detected for excitatory neurons. In addition, we found that upregulated genes in multiple ASD cortex samples were enriched with genes highly expressed in inhibitory neurons, suggesting a potential increase of inhibitory neurons and an imbalance in the ratio between excitatory and inhibitory neurons in ASD brains. Furthermore, the downstream targets of several ASD candidates, such as CHD8, EHMT1 and SATB2, also displayed enriched expression in inhibitory neurons. Taken together, our analyses of single cell transcriptomic data suggest that inhibitory neurons may be a major neuron subtype affected by the disruption of ASD gene networks, providing single cell functional evidence to support the excitatory/inhibitory (E/I) imbalance hypothesis.


Asunto(s)
Trastorno del Espectro Autista/genética , Corteza Cerebral/metabolismo , Redes Reguladoras de Genes , Neuronas/metabolismo , Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Factores de Transcripción/genética , Transcriptoma
15.
BMC Genomics ; 18(1): 860, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29126398

RESUMEN

BACKGROUND: Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders. However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide levels. RESULTS: In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner. Examining single nucleotide variants with a predicted functional disruption, we found that the "damaged" alleles were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes. Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic expression and correlated expression across neuronal cells from different individual brains were implicated in the regulation of synaptic function. CONCLUSIONS: Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of brain cell functions.


Asunto(s)
Alelos , Encéfalo/citología , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Polimorfismo de Nucleótido Simple
16.
Mol Autism ; 8: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367307

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial. METHODS: In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for an Mecp2-null allele (Mecp2+/-; Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks). RESULTS: We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and 24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein (HSP) family was found in the 5-week samples, but not at 24 weeks. CONCLUSIONS: These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to response to heat stress and other stressors that function through the HSP pathway.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Macrófagos/citología , Proteína 2 de Unión a Metil-CpG/deficiencia , Microglía/metabolismo , Síndrome de Rett/genética , Análisis de Secuencia de ARN/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Activación de Macrófagos , Ratones , Mutación , Estrés Oxidativo
17.
Mol Autism ; 8: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28321286

RESUMEN

BACKGROUND: CHD8 (chromodomain helicase DNA-binding protein 8), which codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, is one of the most commonly mutated genes in autism spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also been found in schizophrenia (SZ) and intellectual disabilities and influence cancer cell proliferation. We previously reported an RNA-seq analysis carried out on neural progenitor cells (NPCs) and monolayer neurons derived from induced pluripotent stem (iPS) cells that were heterozygous for CHD8 knockout (KO) alleles generated using CRISPR-Cas9 gene editing. A significant number of ASD and SZ candidate genes were among those that were differentially expressed in a comparison of heterozygous KO lines (CHD8+/-) vs isogenic controls (CHD8+/-), including the SZ and bipolar disorder (BD) candidate gene TCF4, which was markedly upregulated in CHD8+/- neuronal cells. METHODS: In the current study, RNA-seq was carried out on CHD8+/- and isogenic control (CHD8+/+) cerebral organoids, which are 3-dimensional structures derived from iPS cells that model the developing human telencephalon. RESULTS: TCF4 expression was, again, significantly upregulated. Pathway analysis carried out on differentially expressed genes (DEGs) revealed an enrichment of genes involved in neurogenesis, neuronal differentiation, forebrain development, Wnt/ß-catenin signaling, and axonal guidance, similar to our previous study on NPCs and monolayer neurons. There was also significant overlap in our CHD8+/- DEGs with those found in a transcriptome analysis carried out by another group using cerebral organoids derived from a family with idiopathic ASD. Remarkably, the top DEG in our respective studies was the non-coding RNA DLX6-AS1, which was markedly upregulated in both studies; DLX6-AS1 regulates the expression of members of the DLX (distal-less homeobox) gene family. DLX1 was also upregulated in both studies. DLX genes code for transcription factors that play a key role in GABAergic interneuron differentiation. Significant overlap was also found in a transcriptome study carried out by another group using iPS cell-derived neurons from patients with BD, a condition characterized by dysregulated WNT/ß-catenin signaling in a subgroup of affected individuals. CONCLUSIONS: Overall, the findings show that distinct ASD, SZ, and BD candidate genes converge on common molecular targets-an important consideration for developing novel therapeutics in genetically heterogeneous complex traits.


Asunto(s)
Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Células Madre Pluripotentes Inducidas/citología , Trastornos Mentales/genética , Organoides/citología , Análisis de Secuencia de ARN/métodos , Telencéfalo/citología , Factores de Transcripción/genética , Trastorno del Espectro Autista/genética , Trastorno Bipolar/genética , Sistemas CRISPR-Cas , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Mutación , Esquizofrenia/genética
18.
BMC Syst Biol ; 10(1): 105, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27846841

RESUMEN

BACKGROUND: Individuals with 22q11.2 Deletion Syndrome (22q11.2 DS) are a specific high-risk group for developing schizophrenia (SZ), schizoaffective disorder (SAD) and autism spectrum disorders (ASD). Several genes in the deleted region have been implicated in the development of SZ, e.g., PRODH and DGCR8. However, the mechanistic connection between these genes and the neuropsychiatric phenotype remains unclear. To elucidate the molecular consequences of 22q11.2 deletion in early neural development, we carried out RNA-seq analysis to investigate gene expression in early differentiating human neurons derived from induced pluripotent stem cells (iPSCs) of 22q11.2 DS SZ and SAD patients. METHODS: Eight cases (ten iPSC-neuron samples in total including duplicate clones) and seven controls (nine in total including duplicate clones) were subjected to RNA sequencing. Using a systems level analysis, differentially expressed genes/gene-modules and pathway of interests were identified. Lastly, we related our findings from in vitro neuronal cultures to brain development by mapping differentially expressed genes to BrainSpan transcriptomes. RESULTS: We observed ~2-fold reduction in expression of almost all genes in the 22q11.2 region in SZ (37 genes reached p-value < 0.05, 36 of which reached a false discovery rate < 0.05). Outside of the deleted region, 745 genes showed significant differences in expression between SZ and control neurons (p < 0.05). Function enrichment and network analysis of the differentially expressed genes uncovered converging evidence on abnormal expression in key functional pathways, such as apoptosis, cell cycle and survival, and MAPK signaling in the SZ and SAD samples. By leveraging transcriptome profiles of normal human brain tissues across human development into adulthood, we showed that the differentially expressed genes converge on a sub-network mediated by CDC45 and the cell cycle, which would be disrupted by the 22q11.2 deletion during embryonic brain development, and another sub-network modulated by PRODH, which could contribute to disruption of brain function during adolescence. CONCLUSIONS: This study has provided evidence for disruption of potential molecular events in SZ patient with 22q11.2 deletion and related our findings from in vitro neuronal cultures to functional perturbations that can occur during brain development in SZ.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Neuronas/patología , Trastornos Psicóticos/genética , Esquizofrenia/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Línea Celular , Redes Reguladoras de Genes , Humanos , Trastornos Psicóticos/patología , Trastornos Psicóticos/fisiopatología , Esquizofrenia/patología , Esquizofrenia/fisiopatología
20.
PLoS One ; 11(1): e0148039, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824476

RESUMEN

Deletions encompassing the BP1-2 region at 15q11.2 increase schizophrenia and epilepsy risk, but only some carriers have either disorder. To investigate the role of CYFIP1, a gene within the region, we performed knockdown experiments in human neural progenitors derived from donors with 2 copies of each gene at the BP1-2 locus. RNA-seq and cellular assays determined that knockdown of CYFIP1 compromised cytoskeletal remodeling. FMRP targets and postsynaptic density genes, each implicated in schizophrenia, were significantly overrepresented among differentially expressed genes (DEGs). Schizophrenia and/or epilepsy genes, but not those associated with randomly selected disorders, were likewise significantly overrepresented. Mirroring the variable expressivity seen in deletion carriers, marked between-line differences were observed for dysregulation of disease genes. Finally, a subset of DEGs showed a striking similarity to known epilepsy genes and represents novel disease candidates. Results support a role for CYFIP1 in disease and demonstrate that disease-related biological signatures are apparent prior to neuronal differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Bases , Epilepsia/genética , Redes Reguladoras de Genes , Esquizofrenia/genética , Eliminación de Secuencia , Adulto , Cromosomas Humanos Par 15 , Epilepsia/metabolismo , Epilepsia/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Cultivo Primario de Células , Riesgo , Esquizofrenia/metabolismo , Esquizofrenia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...