Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(8)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37995365

RESUMEN

This work investigates the mechanical deformation and fracture characteristics of pristine bundles of vertically aligned multi-walled carbon nanotubes (MWCNTs) subjected to axial compressionin situtransmission electron microscope (TEM). Accurate measurements of force-displacement data were collected simultaneously with real-time TEM videos of the deformation process. Two distinct regimes were observed in the force-displacement curve: (1) an initial elastic section with a linear slope, followed by (2) a transition to a force plateau at a critical buckling force. Morphological data revealed coordinated buckling of the pristine bundle, indicating strong van der Waals (VdW) forces between the nanotubes. The experimental setup measured an effective modulus of 83.9 GPa for an MWCNT bundle, which was in agreement with finite element analysis (FEA) simulations. FEA also highlighted the significant role of VdW forces in the bundle mechanical reactions. Furthermore, we identified nickel nanoparticles as key players in the fracture behavior of the bundles, acting as nucleation sites for defects. The direct mechanical measurements of MWCNT bundles provide valuable insights into their mechanical deformation and fracture behavior, while correlating it to the morphology of the bundle. Understanding these interactions at the bundle level is crucial for improving the reliability and durability of VACNTs-based components.

2.
Polymers (Basel) ; 15(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242855

RESUMEN

Additive Manufacturing (AM), commonly known as "3D printing", is rapidly integrated into many various fields, from everyday commercial to high-end medical and aerospace. Its production flexibility in small-scale and complex shapes is a significant advantage over conventional methods. However, inferior physical properties of parts manufactured by AM in general, and by material extrusion in particular, compared to traditional fabrication methods, inhibit its full assimilation. Specifically, the mechanical properties of printed parts are not high enough and, more importantly, not consistent enough. Optimization of the many various printing parameters is therefore required. This work reviews the influence of material selection, printing parameters such as path (e.g., layer thickness and raster angle), build (e.g., infill and building orientation) and temperature parameters (e.g., nozzle or platform temperature) on mechanical properties. Moreover, this work focuses on the interactions between the printing parameters, their mechanisms, and the statistical methods required to identify such interactions. Choosing the right parameters can increase mechanical properties by up to 60% (raster angle and orientation build), or render other parameters insignificant (material selection), while specific settings of certain parameters can completely inverse the influence trend of other parameters. Finally, trends for future research are suggested.

3.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678054

RESUMEN

Carbon nanotubes (CNTs) are extremely conductive and flexible, making them ideal for applications such as flexible electronics and nanoelectromechanical systems. However, in order to properly apply them in such devices, their long-term durability must be assessed. In the present study, we demonstrate cyclic loading of a thick MWCNT (175 nm) under axial compression, observed in situ under a transmission electron microscope (TEM). The force was applied via controlled displacement, while real-time TEM videos of the deformation process were gathered to produce the morphological data. The in situ observations combined with force-displacement curves revealed the onset of buckling instabilities, and the elastic limits of the tube were assessed. The MWCNT retained its original structure even after 68 loading-unloading cycles, despite observed clues for structural distortions. The stiffness of the tube, calculated after each loading cycle, was in a 0.15 to 0.28 TPa range-comparable to the literature, which further validates the measurement set-up. These in situ tests demonstrate the resilience of CNTs to fatigue which can be correlated with the CNTs' structure. Such correlations can help tailoring CNTs' properties to specific applications.

4.
Polymers (Basel) ; 15(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36616430

RESUMEN

In this study, a reactive adsorbent filler was integrated into a polymeric matrix as a novel reactive protective barrier without undermining its mechanical, thermal, and chemical properties. For this purpose, newly synthesized TiO2/MCM/polydimethylsiloxane (PDMS) composites were prepared, and their various properties were thoroughly studied. The filler, TiO2/MCM, is based on a (45 wt%) TiO2 nanoparticle catalyst inside the pores of ordered mesoporous silica, MCM-41, which combines a high adsorption capacity and catalytic capability. This study shows that the incorporation of TiO2/MCM significantly enhances the composite's Young's modulus in terms of tensile strength, as an optimal measurement of 1.6 MPa was obtained, compared with that of 0.8 MPa of pristine PDMS. The composites also showed a higher thermal stability, a reduction in the coefficient of thermal expansion (from 290 to 110 ppm/°C), a 25% reduction in the change in the normalized specific heat capacity, and an increase in the thermal degradation temperatures. The chemical stability in organic environments was improved, as toluene swelling decreased by 40% and the contact angle increased by ~15°. The enhanced properties of the novel synthesized TiO2/MCM/PDMS composite can be used in various applications where a high adsorption capacity and catalytic/photocatalytic activity are required, such as in protective equipment, microfluidic applications, and chemical sensor devices.

5.
Nanomaterials (Basel) ; 11(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34685058

RESUMEN

The attractive properties of single-wall carbon nanotubes (SWCNT) such as mechanical strength and high electrical and thermal conductivity are often undercut by their agglomeration and re-agglomeration tendencies. As a result, the application of SWCNT as additives in advanced composite materials remain far from their potential, with proper dispersion being the major inhibitor. This work presents a dispersion quality control approach for water-based SWCNT dispersions (dispersed by a unique combination of physical and chemical methods), using complementary and easily scalable, characterization methods. UV-Vis spectroscopy, rheological measurements, and precipitant sheet resistance were used to understand the properties of the initial solution through processing and application. From an industrial perspective, these methods are fast and easy to measure while giving a repetitive and quick indication of dispersion quality and stability. The methods were correlated with microscopy and Raman spectroscopy to validate dispersion and SWCNT quality under various dispersing energies. The protocol was then applied to estimate the stability of SWCNT solutions, as well as the effectiveness of different surfactants in aiding dispersion. The simple, fast, and scalable combination of different characterizations provides good SWCNT dispersion and can be used as a quality control system for industrial production and usage.

6.
Polymers (Basel) ; 13(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34451179

RESUMEN

Focused Ion Beam (FIB) is one of the most common methods for nanodevice fabrication. However, its implications on mechanical properties of polymers have only been speculated. In the current study, we demonstrated flexural bending of FIB-milled epoxy nanobeam, examined in situ under a transmission electron microscope (TEM). Controllable displacement was applied, while real-time TEM videos were gathered to produce morphological data. EDS and EELS were used to characterize the compositions of the resultant structure, and a computational model was used, together with the quantitative results of the in situ bending, to mechanically characterize the effect of Ga+ ions irradiation. The damaged layer was measured at 30 nm, with high content of gallium (40%). Examination of the fracture revealed crack propagation within the elastic region and rapid crack growth up to fracture, attesting to enhanced brittleness. Importantly, the nanoscale epoxy exhibited a robust increase in flexural strength, associated with chemical tempering and ion-induced peening effects, stiffening the outer surface. Young's modulus of the stiffened layer was calculated via the finite element analysis (FEA) simulation, according to the measurement of 30 nm thickness in the STEM and resulted in a modulus range of 30-100 GPa. The current findings, now established in direct measurements, pave the way to improved applications of polymers in nanoscale devices to include soft materials, such as polymer-based composites and biological samples.

7.
Sci Rep ; 10(1): 8892, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483268

RESUMEN

WS2 inorganic nanotubes (WS2-NT) have been incorporated into Polylactic Acid (PLA) by melt mixing to create a bio-degradable, mechanically reinforced nanocomposite filament. The filament was then processed by Fused Filament Fabrication (FFF) 3D-printer, and the morphology and characteristics before and after printing were compared. We found that addition of WS2-NT to PLA by extrusion mixing increases the elastic modulus, yield strength and strain-at-failure by 20%, 23% and 35%, respectively. Moreover, we found that the printing process itself improves the dispersion of WS2-NT within the PLA filament, and does not require changing of the printing parameters compared to pure PLA. The results demonstrate the advantage of WS2-NT as reinforcement specifically in 3D-printable polymers, over more traditional nano-reinforcements such as graphene and carbon nanotubes. WS2-NT based 3D-printable nanocomposites can be used for variety of applications from custom-made biodegradable scaffold of soft implants such as cartilage-based organs and biodegradable soft stents to the more general easy-to-apply nano-reinforced polymers.

8.
Polymers (Basel) ; 12(6)2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32545911

RESUMEN

Soft electronics based on various rubbers have lately been needed in many advanced applications such as soft robotics, wearable electronics, and remote health monitoring. The ability of a self-sensing material to be monitored in use provides a significant advantage. However, conductive fillers usually used to increase conductivity also change mechanical properties. Most importantly, the initial sought-after properties of rubber, namely softness and long elastic deformation, are usually compromised. This work presents full mechanical and electro-mechanical characterization, together with self-sensing abilities of a vinyl methyl silicone rubber (VMQ) and multi-walled carbon nanotubes (MWCNTs) composite, featuring conductivity while maintaining low hardness. The research demonstrates that MWCNT/VMQ with just 4 wt.% of MWCNT are as conductive as commercial conductive VMQ based on Carbon Black, while exhibiting lower hardness and higher elastic recovery (~20% plastic deformation, similar to pure rubber). The research also demonstrates piezo-resistivity and Raman-sensitivity, allowing for self-sensing. Using morphological data, proposed mechanisms for the superior electrical and mechanical behavior, as well as the in-situ fingerprint for the composite conditions are presented. This research novelty is in the full MWCNT/VMQ mechanical and electro-mechanical characterization, thus demonstrating its ability to serve as a sensor over large local strains, multiple straining cycles, and environmental damage.

9.
Nanoscale ; 11(35): 16327-16335, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31233061

RESUMEN

Carbon nanostructure (CNS) based polymer nanocomposites (PNCs) are of interest due to the superior properties of the CNS themselves, scale effects, and the ability to transfer these properties anisotropically to the bulk material. However, measurements of physical properties of such materials are not in agreement with theoretical predictions. Recently, the ability to characterize the 3D morphology of such PNCs at the nanoscale has been significantly improved, with rich, quantitative data extracted from tomographic transmission electron microscopy (TEM). In this work, we use new, nanoscale quantitative 3D morphological information and stochastic modeling to re-interpret experimental measurements of continuous aligned carbon nanotube (A-CNT) PNC properties as a function of A-CNT packing/volume fraction. The 3D tortuosity calculated from tomographic reconstructions and its evolution with volume fraction is used to develop a novel definition of waviness that incorporates the stochastic nature of CNT growth. The importance of using randomly wavy CNTs to model these materials is validated by agreement between simulated and previously-measured PNC elastic moduli. Secondary morphological descriptors such as CNT-CNT junction density and inter-junction distances are measured for transport property predictions. The scaling of the junction density with CNT volume fraction is observed to be non-linear, and this non-linearity is identified as the primary reason behind the previously unexplained scaling of aligned-CNT PNC longitudinal thermal conductivity. By contrast, the measured electrical conductivity scales linearly with volume fraction as it is relatively insensitive to junction density beyond percolation. This result verifies prior hypotheses that electrical conduction in such fully percolated and continuous CNT systems is dominated by the bulk resistivity of the CNTs themselves. This combination of electron tomographic data and stochastic simulations is a powerful method for establishing a predictive capability for nanocomposite structure-property relations, making it an essential aid in understanding and tailoring the next-generation of advanced composites.

10.
Nanotechnology ; 28(24): 24LT01, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28485304

RESUMEN

Here, we report the fabrication of aligned carbon nanotube (A-CNT)/conducting polymer (CP) heterostructures with both uniform conformal and periodic beaded polymer morphologies via oxidative chemical vapor deposition of poly(ethylenedioxythiophene). Periodic beaded CP morphologies are realized utilizing the Plateau-Rayleigh instability to transform the original uniform conformal film, yielding a beaded CP morphology with a >50% enhancement in specific surface area (SSA). Modeling indicates that this SSA increase originates from the internal volume of the A-CNTs becoming available for adsorption, and that these internal A-CNT surfaces, if they could be made accessible to electrolyte ions, could lead to >30% enhancement of specific gravimetric and volumetric capacitances of current state-of-the-art A-CNT/CP heterostructures.

11.
ACS Nano ; 9(6): 6050-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26030266

RESUMEN

Carbon nanotube (CNT) reinforced polymers are next-generation, high-performance, multifunctional materials with a wide array of promising applications. The successful introduction of such materials is hampered by the lack of a quantitative understanding of process-structure-property relationships. These relationships can be developed only through the detailed characterization of the nanoscale reinforcement morphology within the embedding medium. Here, we reveal the three-dimensional (3D) nanoscale morphology of high volume fraction (V(f)) aligned CNT/epoxy-matrix nanocomposites using energy-filtered electron tomography. We present an automated phase-identification method for fast, accurate, representative rendering of the CNT spatial arrangement in these low-contrast bimaterial systems. The resulting nanometer-scale visualizations provide quantitative information on the evolution of CNT morphology and dispersion state with increasing V(f), including network structure, CNT alignment, bundling and waviness. The CNTs are observed to exhibit a nonlinear increase in bundling and alignment and a decrease in waviness as a function of increasing V(f). Our findings explain previously observed discrepancies between the modeled and measured trends in bulk mechanical, electrical and thermal properties. The techniques we have developed for morphological quantitation are applicable to many low-contrast material systems.

12.
ACS Nano ; 8(5): 4591-9, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24684313

RESUMEN

Here we present a study on the presence of physisorbed water on the surface of aligned carbon nanotubes (CNTs) in ambient conditions, where the wet CNT array mass can be more than 200% larger than that of dry CNTs, and modeling indicates that a water layer >5 nm thick can be present on the outer CNT surface. The experimentally observed nonlinear and non-monotonic dependence of the mass of adsorbed water on the CNT packing (volume fraction) originates from two competing modes. Physisorbed water cannot be neglected in the design and fabrication of materials and devices using nanowires/nanofibers, especially CNTs, and further experimental and ab initio studies on the influence of defects on the surface energies of CNTs, and nanowires/nanofibers in general, are necessary to understand the underlying physics and chemistry that govern this system.

13.
Macromol Rapid Commun ; 32(24): 1993-7, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22102422

RESUMEN

Residual stress in polymers arises from the freezing of unstable molecular conformations. Residual stress is critical because its relaxation can cause shrinkage, defects, and fractures of polymer materials. The storage of stress is purposely enhanced to develop shape memory materials. Unfortunately, the storage of mechanical stress is still poorly controlled and understood. An approach to sense the storage of stress based on the spectroscopic response of carbon nanotubes is explored. The Raman response of nanotubes exhibits a variable sensitivity to strain when embedded in polymers that have experienced different thermal and mechanical treatments. This unique feature opens up new possibilities for the use of carbon nanotubes as mechanical nanosensors.


Asunto(s)
Nanotubos de Carbono , Estrés Mecánico , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA