Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6209, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266340

RESUMEN

To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.


Asunto(s)
Actinas , Cadenas Ligeras de Miosina , Humanos , Animales , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Actinas/metabolismo , Pez Cebra/metabolismo , Calcio/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Proteínas Quinasas/metabolismo
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806332

RESUMEN

Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.


Asunto(s)
Valina-ARNt Ligasa , Pez Cebra , Animales , Ácidos Grasos , Antígenos HLA/genética , Mitocondrias/genética , Valina-ARNt Ligasa/genética , Pez Cebra/genética
3.
J Mol Cell Cardiol ; 126: 13-22, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445017

RESUMEN

AIMS: Circulating immune cells have a significant impact on progression and outcome of heart failure. Long non-coding RNAs (lncRNAs) comprise novel epigenetic regulators which control cardiovascular diseases and inflammatory disorders. We aimed to identify lncRNAs regulated in circulating immune cells of the blood of heart failure patients. METHODS AND RESULTS: Next-generation sequencing revealed 110 potentially non-coding RNA transcripts differentially expressed in peripheral blood mononuclear cells of heart failure patients with reduced ejection fraction. The up-regulated lncRNA Heat2 was further functionally characterized. Heat2 expression was detected in whole blood, PBMNCs, eosinophil and basophil granulocytes. Heat2 regulates cell division, invasion, transmigration and immune cell adhesion on endothelial cells. CONCLUSION: Heat2 is an immune cell enriched lncRNA that is elevated in the blood of heart failure patients and controls cellular functions.


Asunto(s)
Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , ARN Largo no Codificante/genética , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Eosinófilos/metabolismo , Femenino , Insuficiencia Cardíaca/sangre , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...