RESUMEN
BACKGROUND: Tick-borne encephalitis (TBE) is a severe human neuroinfection caused by TBE virus (TBEV). TBEV is transmitted by tick bites and by the consumption of unpasteurized dairy products from infected asymptomatic ruminants. In France, several food-borne transmission events have been reported since 2020, raising the question of the level of exposure of domestic ungulates to TBEV. In this study, our objectives were (i) to estimate TBEV seroprevalence and quantify antibodies titres in cattle in the historical endemic area of TBEV in France using the micro virus neutralisation test (MNT) and (ii) to compare the performance of two veterinary cELISA kits with MNT for detecting anti-TBEV antibodies in cattle in various epidemiological contexts. A total of 344 cattle sera from four grid cells of 100 km² in Alsace-Lorraine (endemic region) and 84 from western France, assumed to be TBEV-free, were investigated. RESULTS: In Alsace-Lorraine, cattle were exposed to the virus with an overall estimated seroprevalence of 57.6% (95% CI: 52.1-62.8%, n = 344), varying locally from 29.9% (95% CI: 21.0-40.0%) to 92.1% (95% CI: 84.5-96.8%). Seroprevalence did not increase with age, with one- to three-year-old cattle being as highly exposed as older ones, suggesting a short-life duration of antibodies. The proportion of sera with MNT titres lower than 1:40 per grid cell decreased with increased seroprevalence. Both cELISA kits showed high specificity (> 90%) and low sensitivity (less than 78.1%) compared with MNT. Sensitivity was lower for sera with neutralising antibodies titres below 1:40, suggesting that sensitivity of these tests varied with local virus circulation intensity. CONCLUSIONS: Our results highlight that cattle were highly exposed to TBEV. Screening strategy and serological tests should be carefully chosen according to the purpose of the serological study and with regard to the limitations of each method.
Asunto(s)
Anticuerpos Antivirales , Enfermedades de los Bovinos , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Bovinos , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Encefalitis Transmitida por Garrapatas/virología , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Francia/epidemiología , Estudios Seroepidemiológicos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Anticuerpos Antivirales/sangre , Femenino , Masculino , Pruebas de Neutralización/veterinaria , Enfermedades Endémicas/veterinariaRESUMEN
The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain. Additional co-IP assays performed with several TYK2 orthologs reveal that the interaction is conserved across mammalian species. In vitro kinase assays show that TBEV and LIV NS5 reduce the catalytic activity of TYK2. Our results thus illustrate a novel mechanism by which viruses suppress the interferon response.
Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , TYK2 Quinasa , Garrapatas , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Interferones/metabolismo , Garrapatas/metabolismo , TYK2 Quinasa/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , HumanosRESUMEN
Bluetongue virus (BTV), a double-stranded RNA virus belonging to the Sedoreoviridae family, provokes an economically important disease in ruminants. In this study, we show that the production of activated caspase-1 and interleukin 1 beta (IL-1ß) is induced in BTV-infected cells. This response seems to require virus replication since a UV-inactivated virus is unable to activate this pathway. In NLRP3-/- cells, BTV could not trigger further IL-1ß synthesis, indicating that it occurs through NLRP3 inflammasome activation. Interestingly, we observed differential activation levels in bovine endothelial cells depending on the tissue origin. In particular, inflammasome activation was stronger in umbilical cord cells, suggesting that these cells are more prone to induce the inflammasome upon BTV infection. Finally, the strength of the inflammasome activation also depends on the BTV strain, which points to the importance of viral origin in inflammasome modulation. This work reports the crucial role of BTV in the activation of the NLRP3 inflammasome and further shows that this activation relies on BTV replication, strains, and cell types, thus providing new insights into BTV pathogenesis.
RESUMEN
Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.
Asunto(s)
Dermacentor , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Humanos , Europa (Continente)/epidemiología , Animales Salvajes , MamíferosRESUMEN
This study assesses the efficacy of Geriatric Assessment (GA)-driven interventions and follow-up on six-month mortality, functional, and nutritional status in older patients with head and neck cancer (HNC). HNC patients aged 65 years or over were included between November 2013 and September 2018 by 15 Ear, Nose, and Throat (ENT) and maxillofacial surgery departments at 13 centers in France. The study was of an open-label, multicenter, randomized, controlled, and parallel-group design, with independent outcome assessments. The patients were randomized 1:1 to benefit from GA-driven interventions and follow-up versus standard of care. The interventions consisted in a pre-therapeutic GA, a standardized geriatric intervention, and follow-up, tailored to the cancer-treatment plan for 24 months. The primary outcome was a composite criterion including six-month mortality, functional impairment (fall in the Activities of Daily Living (ADL) score ≥2), and weight loss ≥10%. Among the patients included (n = 499), 475 were randomized to the experimental (n = 238) or control arm (n = 237). The median age was 75.3 years [70.4-81.9]; 69.5% were men, and the principal tumor site was oral cavity (43.9%). There were no statistically significant differences regarding the primary endpoint (n = 98 events; 41.0% in the experimental arm versus 90 (38.0%); p = 0.53), or for each criterion (i.e., death (31 (13%) versus 27 (11.4%); p = 0.48), weight loss of ≥10% (69 (29%) versus 65 (27.4%); p = 0.73) and fall in ADL score ≥2 (9 (3.8%) versus 13 (5.5%); p = 0.35)). In older patients with HNC, GA-driven interventions and follow-up failed to improve six-month overall survival, functional, and nutritional status.
RESUMEN
Tick-borne encephalitis virus' (TBEV) geographic range and the human incidence are increasing throughout Europe, putting a number of non-endemic regions and countries at risk of outbreaks. In spring 2020, there was an outbreak of tick-born encephalitis (TBE) in Ain, Eastern France, where the virus had never been detected before. All patients but one had consumed traditional unpasteurised raw goat cheese from a local producer. We conducted an investigation in the suspected farm using an integrative One Health approach. Our methodology included (i) the detection of virus in cheese and milk products, (ii) serological testing of all animals in the suspected farm and surrounding farms, (iii) an analysis of the landscape and localisation of wooded area, (iv) the capture of questing ticks and small mammals for virus detection and estimating enzootic hazard, and (v) virus isolation and genome sequencing. This approach allowed us to confirm the alimentary origin of the TBE outbreak and witness in real-time the seroconversion of recently exposed individuals and excretion of virus in goat milk. In addition, we identified a wooded focus area where and around which there is a risk of TBEV exposure. We provide the first TBEV isolate responsible for the first alimentary-transmitted TBE in France, obtained its full-length genome sequence, and found that it belongs to the European subtype of TBEV. TBEV is now a notifiable human disease in France, which should facilitate surveillance of its incidence and distribution throughout France.
RESUMEN
The transmission of tick-borne encephalitis virus (TBEV) through food is rare, but can occur through the consumption of raw milk products from animals infected by tick bites. In 2020, France faced a TBEV outbreak linked to the consumption of unpasteurized goat cheese. The aim of this study was to develop and characterize a molecular method for the detection of TBEV in raw milk products based on the recent international standard PR ISO/DIS 16140-4. The TBEV recovery rates varied with the inoculation level and settings. The LOD50 and LOD95 of TBEV were 6.40 × 103 genome copies per g or per mL and 2.84 × 104 genome copies per g or per mL, respectively. The percentages of RT-qPCR inhibitions were lower than 75% and the murine norovirus (MNV-1), used as process control, was detected in all samples with a recovery rate higher than 1%, as recommended in ISO 15216. We conclude that the described method is appropriate to detect TBEV in raw milk products for routine diagnosis, and to assess potential health risks.
Asunto(s)
Queso , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/epidemiología , Cabras , Ratones , LecheRESUMEN
Ticks and tick-borne diseases (TBDs) represent a burden for human and animal health worldwide. Currently, vaccines constitute the safest and most effective approach to control ticks and TBDs. Subolesin (SUB) has been identified as a vaccine antigen for the control of tick infestations and pathogen infection and transmission. The characterization of the molecular function of SUB and the identification of tick proteins interacting with SUB may provide the basis for the discovery of novel antigens and for the rational design of novel anti-tick vaccines. In the present study, we used the yeast two-hybrid system (Y2H) as an unbiased approach to identify tick SUB-interacting proteins in an Ixodes ricinus cDNA library, and studied the possible role of SUB as a chromatin remodeler through direct interaction with histones. The Y2H screening identified Importin-α as a potential SUB-interacting protein, which was confirmed in vitro in a protein pull-down assay. The sub gene expression levels in tick midgut and fat body were significantly higher in unfed than fed female ticks, however, the importin-α expression levels did not vary between unfed and fed ticks but tended to be higher in the ovary when compared to those in other organs. The effect of importin-α RNAi was characterized in I. ricinus under artificial feeding conditions. Both sub and importin-α gene knockdown was observed in all tick tissues and, while tick weight was significantly lower in sub RNAi-treated ticks than in controls, importin-α RNAi did not affect tick feeding or oviposition, suggesting that SUB is able to exert its function in the absence of Importin-α. Furthermore, SUB was shown to physically interact with histone 4, which was corroborated by protein pull-down and western blot analysis. These results confirm that by interacting with numerous tick proteins, SUB is a key cofactor of the tick interactome and regulome. Further studies are needed to elucidate the nature of the SUB-Importin-α interaction and the biological processes and functional implications that this interaction may have.
RESUMEN
BACKGROUND: Louping ill virus (LIV) and tick-borne encephalitis virus (TBEV) are tick-borne flaviviruses that are both transmitted by the major European tick, Ixodes ricinus. Despite the importance of I. ricinus as an arthropod vector, its capacity to acquire and subsequently transmit viruses, known as vector competence, is poorly understood. At the molecular scale, vector competence is governed in part by binary interactions established between viral and cellular proteins within infected tick cells. METHODS: To investigate virus-vector protein-protein interactions (PPIs), the entire set of open reading frames for LIV and TBEV was screened against an I. ricinus cDNA library established from three embryonic tick cell lines using yeast two-hybrid methodology (Y2H). PPIs revealed for each viral bait were retested in yeast by applying a gap repair (GR) strategy, and notably against the cognate protein of both viruses, to determine whether the PPIs were specific for a single virus or common to both. The interacting tick proteins were identified by automatic BLASTX, and in silico analyses were performed to expose the biological processes targeted by LIV and TBEV. RESULTS: For each virus, we identified 24 different PPIs involving six viral proteins and 22 unique tick proteins, with all PPIs being common to both viruses. According to our data, several viral proteins (pM, M, NS2A, NS4A, 2K and NS5) target multiple tick protein modules implicated in critical biological pathways. Of note, the NS5 and pM viral proteins establish PPI with several tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins, which are essential adaptor proteins at the nexus of multiple signal transduction pathways. CONCLUSION: We provide the first description of the TBEV/LIV-I. ricinus PPI network, and indeed of any PPI network involving a tick-borne virus and its tick vector. While further investigation will be needed to elucidate the role of each tick protein in the replication cycle of tick-borne flaviviruses, our study provides a foundation for understanding the vector competence of I. ricinus at the molecular level. Indeed, certain PPIs may represent molecular determinants of vector competence of I. ricinus for TBEV and LIV, and potentially for other tick-borne flaviviruses.
Asunto(s)
Proteínas de Artrópodos/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Interacciones Microbiota-Huesped , Ixodes/genética , Ixodes/virología , Proteínas Virales/metabolismo , Animales , Proteínas de Artrópodos/genética , Femenino , Biblioteca de Genes , Sistemas de Lectura Abierta , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales/genéticaRESUMEN
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Asunto(s)
Enfermedades de los Animales/virología , Ciervos/virología , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas/veterinaria , Infecciones por Flavivirus/veterinaria , Flavivirus , Enfermedades de los Animales/historia , Enfermedades de los Animales/transmisión , Animales , Encefalitis Transmitida por Garrapatas/historia , Francia/epidemiología , Geografía Médica , Historia del Siglo XXI , Estudios SeroepidemiológicosRESUMEN
Vaccination is a key element in the control of foot-and-mouth disease (FMD). The majority of the antigenic sites that induce protective immune responses are localized on the FMD virus (FMDV) capsid that is formed by four virus-encoded structural proteins, VP1 to VP4. In the present study, recombinant canine adenovirus type 2 (CAV2)-based FMD vaccines, Cav-P1/3C R° and Cav-VP1 R°, respectively expressing the structural P1 precursor protein along with the non-structural 3C protein or expressing the structural VP1 protein of the FMDV strain O/FRA/1/2001, were evaluated as novel vaccines against FMD. A strong humoral immune response was elicited in guinea pigs (GP) following immunization with Cav-P1/3C R°, while administration of Cav-VP1 R° did not induce a satisfying antibody response in GP or mice. GP were then used as an experimental model for the determination of the protection afforded by the Cav-P1/3C R° vaccine against challenge with the FMDV strain O1 Manisa/Turkey/1969. The Cav-P1/3C R° vaccine protected GP from generalized FMD to a similar extent as a high potency double-oil emulsion O1 Manisa vaccine. The results of the present study show that CAV2-based vector vaccines can express immunogenic FMDV antigens and offer protection against generalized FMD in GP. This suggest that Cav-P1/3C R° FMDV vaccine may protect natural host species from FMD. In combination with an appropriate diagnostic test, the Cav-P1/3C R° FMDV vaccine may also serve as a marker vaccine to differentiate vaccinated from infected animals.
Asunto(s)
Adenovirus Caninos/genética , Adenovirus Caninos/inmunología , Reacciones Cruzadas/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Perros , Femenino , Cobayas , Inmunización , Inmunogenicidad Vacunal , Masculino , Ratones , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunologíaRESUMEN
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches.
Asunto(s)
Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Transgenes/genética , Transgenes/inmunología , Administración Oral , Animales , Femenino , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Humanos , Inmunización , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Especificidad de Órganos , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Fagocitos/metabolismo , Transporte de Proteínas , VacunaciónRESUMEN
Trichinella spiralis is an intracellular parasitic nematode of mammalian skeletal muscle, causing a serious zoonotic disease in humans and showing a high economic impact mainly in pig breeding. Serine proteinases of T. spiralis play important roles in the host-parasite interactions mediating host invasion. In this study, we have focused on newborn larvae (NBL-1), the first identified serine proteinase from the NBL stage of T. spiralis. Five monoclonal antibodies (mAbs) directed against the C-terminal part of NBL1, were produced. These mAbs were IgG1κ isotype and specifically recognized as a common motif of 10 amino acids (PSSGSRPTYP). Selected mAbs were further characterized using antigens from various developmental stages of T. spiralis. Western blot revealed that selected mAbs reacted with the native NBL1 at Mr 50 kDa in the adult and NBL mixed antigens and NBL stage alone. Indirect immunofluorescence analysis revealed that selected mAbs intensely stained only the embryos within the gravid females and the NBL. Thus, the produced mAbs are useful tools for the characterization of NBL1 as a major antigen of Trichinella involved in the invasion of the host but also for the development of new serological tests with an early detection of T. spiralis infection.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Serina Proteasas/metabolismo , Trichinella spiralis/enzimología , Trichinella spiralis/crecimiento & desarrollo , Animales , Anticuerpos Monoclonales/clasificación , Antígenos Helmínticos/inmunología , Epítopos , Larva/enzimología , Ratones , Transporte de Proteínas , Serina Proteasas/genéticaRESUMEN
A clone, designated L20h-Ts3, was selected by immunoscreening of cDNA libraries of Trichinella spiralis worms collected 14h, 20h and 48h post-infection (p.i.) from mice intestines. L20h-Ts3 encodes the full-length of a conserved hypothetical protein of 13.1kDa involving putative interaction with the immune system. PCR analysis showed that L20h-Ts3 mRNA is constitutively expressed throughout T. spiralis life cycle and not restricted to intestinal stages. The L20h-Ts3 fusion protein was obtained in an Escherichia coli expression system and purified by Ni-affinity chromatography before inoculation into mice in order to produce polyclonal antibodies. Then, immunohistochemical study and Western blot analysis revealed its presence within the stichosome of T. spiralis and in excretory/secretory products strengthening a putative fundamental role for the parasite's survival such as host tissue invasion or modification of the host muscular cell phenotype. L20h-Ts3 fusion protein was recognized in Western blot as soon as 15-20 days p.i. by sera from pigs experimentally infected with 20,000 muscle larvae (ML) of T. spiralis. Thus, an indirect L20h-Ts3 ELISA was designed and evaluated using sera from experimentally infected pigs by comparison with the only ELISA currently available for trichinellosis purposes. A gain of precocity from 7 up to 14 days and detection up to 25 weeks p.i. was possible with the L20h-Ts3 ELISA offering a large window for trichinellosis detection. The L20h-Ts3 ELISA was less effective in the case of low infections in pigs. Nevertheless, these results show that the L20h-Ts3 ELISA has a real interest due to its precocity and stability of detection in time. The association of the L20h-Ts3 fusion protein with other antigenic proteins identified previously could appreciably improve the serological test and facilitate its standardization.
Asunto(s)
Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/inmunología , Proteínas del Helminto/inmunología , Enfermedades de los Porcinos/diagnóstico , Trichinella/inmunología , Triquinelosis/diagnóstico , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Biblioteca de Genes , Proteínas del Helminto/genética , Larva , Ratones , Músculos/parasitología , Porcinos , Enfermedades de los Porcinos/parasitología , Trichinella/genética , Trichinella/aislamiento & purificación , Trichinella spiralis/genética , Trichinella spiralis/inmunología , Trichinella spiralis/aislamiento & purificación , Triquinelosis/parasitologíaRESUMEN
The presence of the mesocercarial stage of Alaria alata (Goeze, 1792) in wild boar meat represents a potential risk for human, but little is known about the circulation of mesocercaria in wild boar populations. Routine Trichinella inspection, mandatorily performed in wild boar in France, also allowed detecting mesocercaria. We analyzed the results of this detection in the carcasses of 27,582 wild boars hunted in 2007-2011, in 502 hunting areas of the Rhine valley. Prevalence was globally low (0.6%), but 12% of the hunting areas were affected. These were clustered in lowlands of the Rhine valley, and prevalence strongly decreased with increasing elevation. In the lowlands, prevalence doubled between 2007 and 2011. This time trend and the geographic aggregation of positive wild boars suggest risk management measures based on targeted surveillance, control and prevention.
Asunto(s)
Carne/parasitología , Sus scrofa/parasitología , Enfermedades de los Porcinos/epidemiología , Trematodos/fisiología , Infecciones por Trematodos/veterinaria , Animales , Francia , Prevalencia , Porcinos , Infecciones por Trematodos/epidemiologíaRESUMEN
Freeze-tolerance of encapsulated Trichinella muscle larvae (ML) is mainly determined by Trichinella species, but is also influenced by host species, the age of the infection and the storage time and temperature of the infected meat. Moreover, the freeze-tolerance of the encapsulated species appears to be correlated to the development of thick capsule walls which increases with age. An extended infection period and the muscle composition in some hosts (e.g. herbivores) may provide freeze-avoiding matrices due to high carbohydrate contents. The present experiment compares freeze-tolerance of Trichinella spiralis and Trichinella britovi ML in wild boar meat 24 weeks post inoculation (wpi). Three groups of four wild boars were infected with 200, 2000 or 20,000 ML of T. britovi (ISS 1575), respectively. Additionally, three wild boars were inoculated with 20,000 ML of T. spiralis (ISS 004) and two animals served as negative controls. All wild boars were sacrificed 24 wpi. Muscle samples of 70 g were stored at -21°C for 19, 30 and 56 h, and for 1-8 weeks. Larvae were recovered by artificial digestion. Their mobilities were recorded using Saisam(®) image analysis software and their infectivities were evaluated using mouse bioassays. Samples frozen for 19, 30 and 56 h allowed recovery of mobile ML, but samples frozen for 1 or 2 weeks did not. Correspondingly, only T. spiralis and T. britovi larvae isolated from wild boar meat frozen for 19, 30 and 56 h established in mice. This study showed that freezing at -21°C for 1 week inactivated T. spiralis and T. britovi ML encapsulated in wild boar meat for 24 weeks.
Asunto(s)
Carne/parasitología , Sus scrofa/parasitología , Enfermedades de los Porcinos/parasitología , Trichinella/fisiología , Triquinelosis/veterinaria , Animales , Digestión , Congelación , Larva , Ratones , Músculos/parasitología , Porcinos , Factores de Tiempo , Trichinella/crecimiento & desarrollo , Trichinella spiralis/crecimiento & desarrollo , Trichinella spiralis/fisiología , Triquinelosis/parasitologíaRESUMEN
We report a case of hookworm-related cutaneous larva migrans diagnosed microscopically. Viable hookworm larvae were found by microscopic examination of a skin scraping from follicular lesions. Amplification and sequencing of the internal transcribed spacer 2 allowed the specific identification of the larvae as Ancylostoma braziliense.
Asunto(s)
Ancylostoma/aislamiento & purificación , Ancylostoma/patogenicidad , Larva Migrans/patología , Piel/parasitología , Administración Oral , Administración Tópica , Adulto , Albendazol/administración & dosificación , Ancylostoma/efectos de los fármacos , Ancylostoma/crecimiento & desarrollo , Animales , Antiparasitarios/administración & dosificación , ADN de Helmintos/genética , Femenino , Humanos , Ivermectina/administración & dosificación , Larva Migrans/diagnóstico , Larva Migrans/tratamiento farmacológico , Piel/patología , Resultado del TratamientoRESUMEN
From 2006 to 2009 we screened 108 red foxes (Vulpes vulpes) and 894 wild boars (Sus scrofa) in Haut-Var, France for Trichinella britovi infection. Prevalences were 2.7 and 0% respectively. The fox may be considered a predictive sentinel for Trichinella in the Haut-Var ecosystem.
Asunto(s)
Zorros/parasitología , Sus scrofa/parasitología , Triquinelosis/veterinaria , Animales , Femenino , Francia/epidemiología , Masculino , Prevalencia , Vigilancia de Guardia/veterinaria , Trichinella/aislamiento & purificación , Triquinelosis/diagnóstico , Triquinelosis/epidemiologíaRESUMEN
Three expression cDNA libraries from Trichinella spiralis worms 14 h, 20 h and 48 h post-infection (p.i.) were screened with serum from pigs experimentally infected with 20,000 T. spiralis muscle larvae. Twenty-nine positive clones were isolated from the 14 h p.i. cDNA library, corresponding to 8 different genes. A putative excretory-secretory protein similar to that of T. pseudospiralis was identified. Three clones corresponded to a T. spiralis serine proteinase inhibitor known to be involved in diverse functions such as blood coagulation and modulation of inflammation. Screening of the 20 h p.i. cDNA library selected 167 positive clones representing 12 different sequences. The clone with the highest redundancy encoded a small polypeptide having no sequence identity with any known proteins from Trichinella or other organisms. Fourteen clones displayed sequence identity with the heat shock protein (HSP) 70. HSPs are produced as an adaptive response of the parasite to the hostile environment encountered in the host intestine but their mechanism of action is not yet well defined. From the 48 h p.i. T. spiralis cDNA library, 91 positive clones were identified representing 7 distinct sequences. Most of the positive clones showed high similarity with a member of a putative T. spiralis serine protease family. This result is consistent with a possible major role for serine proteases during invasive stages of Trichinella infection and host-parasite interactions.