Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096418

RESUMEN

No current technology can specifically target grass carp (Ctenopharyngodon idella) for control within aquatic ecosystems. Rotenone and Carbon Dioxide-Carp are currently the only available registered pesticides for grass carp; they are nonselective and typically applied throughout the water, equally exposing target and native species. A more selective control tool or pesticide application could be used by resource managers to support mitigation efforts. Development of delivery systems that exploit carp feeding strategies could increase selectivity of pesticides and minimize effects on native fishes. A pesticide with selective delivery could be less labor intensive and used within an integrative pest management strategy. The present study examined Antimycin A toxicity in juvenile and sub-adult grass carp and rainbow trout (Oncorhynchus mykiss) across two routes of exposure. Water-based toxicity studies were used to calculate the concentration to cause lethality in 50% of treated fish (LC50) at 24-h, while oral gavage toxicity studies were used to calculate the dose to cause lethality in 50% of treated grass carp and rainbow trout (LD50) 24- to 96-h. Although rainbow trout were more sensitive than grass carp to Antimycin A through water-based exposure, oral toxicity was similar between species, even with inherent gastrointestinal morphological differences. Successful delivery of a lethal dose of Antimycin A to grass carp was achieved through an oral route of exposure using the rapeseed bait and shows promise for registration as a control tool and eventual use in pest management plans. Although a lethal dose of Antimycin A could be incorporated into a single bait pellet, more bait was required to achieve desired mortality when fed to fish under laboratory conditions.

2.
Arch Biochem Biophys ; 564: 237-43, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25317962

RESUMEN

Type-1 copper proteins participate in redox reactions and biological catalysis. Significant variation exists within the electronic structure of type-1 copper sites, producing both blue and green proteins. Classical, "blue" sites have been extensively studied, but "green" sites have been poorly characterized. We recently discovered a green copper protein, called auracyanin D. Here, we report a series of axial ligand mutations in auracyanin D, and characterize the resulting spectral and redox changes. The resulting mutants appear blue, green, and red and vary in redox potential from +56mV to +786mV. This is the largest change in redox potential to date for any type-1 center. We found that in this green protein, modifications of the axial ligand produce significantly larger changes than similar mutations in blue type-1 copper sites.


Asunto(s)
Proteínas Bacterianas/química , Cobre/química , Metaloproteínas/química , Proteínas Bacterianas/genética , Sitios de Unión , Metaloproteínas/genética , Mutagénesis Sitio-Dirigida/métodos
3.
Biochemistry ; 52(46): 8267-75, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24147561

RESUMEN

The metal sites of electron transfer proteins are tuned for function. The type 1 copper site is one of the most utilized metal sites in electron transfer reactions. This site can be tuned by the protein environment from +80 mV to +680 mV in typical type 1 sites. Accompanying this huge variation in midpoint potentials are large changes in electronic structure, resulting in proteins that are blue, green, or even red. Here, we report a family of blue copper proteins, the auracyanins, from the filamentous anoxygenic phototroph Chloroflexus aurantiacus that display the entire known spectral and redox variations known in the type 1 copper site. C. aurantiacus encodes four auracyanins, labeled A-D. The midpoint potentials vary from +83 mV (auracyanin D) to +423 mV (auracyanin C). The electronic structures vary from classical blue copper UV-vis absorption spectra (auracyanin B) to highly perturbed spectra (auracyanins C and D). The spectrum of auracyanin C is temperature-dependent. The expansion and divergent nature of the auracyanins is a previously unseen phenomenon.


Asunto(s)
Proteínas Bacterianas/química , Chloroflexus/química , Cobre/química , Metaloproteínas/química , Secuencia de Aminoácidos , Azurina , Proteínas Bacterianas/genética , Transporte de Electrón , Fenómenos Electrofisiológicos , Metaloproteínas/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Alineación de Secuencia , Espectrofotometría Ultravioleta , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...