Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(12): 3046-3060, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38478906

RESUMEN

The transport properties of the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) confined within silica microparticles with well-ordered, accessible mesopores (5.4 or 9 nm diameter) were investigated. [BMIM][PF6] confinement was confirmed by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The transport properties of the confined IL were studied using the neutral and cationic fluorescent probes 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine 6G, respectively, through fluorescence recovery after photobleaching (FRAP) in confocal microscopy. The diffusivity of DCM in 9 nm pores is 0.026 ± 0.0091 µm2/s, which is 2 orders of magnitude less than in the bulk ionic liquid. The pore size did not affect the diffusivity of DCM in unmodified silica nanopores. The diffusivity of the cationic probe is reduced by 63% relative to that of the neutral probe. Diffusivity is increased with water content, where equilibrium hydration of the system leads to a 37% increase in DCM diffusivity. The most dramatic impact on diffusivity was caused by tethering an IL-like methylimidazolium chloride group to the pores, which increased the pore hydrophobicity and resulted in 3-fold higher diffusivity of DCM compared to bare silica pores. Subsequent exchange of the chloride anion from the tethering group with PF6- decreased the diffusivity to half that of bare silica. The diffusion of probe molecules is affected most strongly by the pore wall effects on probe interactions rather than by the pore size itself, which suggests that understanding pore wall diffusion is critical to the design of nanoconfined ILs for separations, catalysis, and energy storage.

2.
Inorg Chem ; 62(28): 10940-10954, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37405779

RESUMEN

While cancer cells rely heavily upon glycolysis to meet their energetic needs, reducing the importance of mitochondrial oxidative respiration processes, more recent studies have shown that their mitochondria still play an active role in the bioenergetics of metastases. This feature, in combination with the regulatory role of mitochondria in cell death, has made this organelle an attractive anticancer target. Here, we report the synthesis and biological characterization of triarylphosphine-containing bipyridyl ruthenium (Ru(II)) compounds and found distinct differences as a function of the substituents on the bipyridine and phosphine ligands. 4,4'-Dimethylbipyridyl-substituted compound 3 exhibited especially high depolarizing capabilities, and this depolarization was selective for the mitochondrial membrane and occurred within minutes of treatment in cancer cells. The Ru(II) complex 3 exhibited an 8-fold increase in depolarized mitochondrial membranes, as determined by flow cytometry, which compares favorably to the 2-fold increase observed by carbonyl cyanide chlorophenylhydrazone (CCCP), a proton ionophore that shuttles protons across membranes, depositing them into the mitochondrial matrix. Fluorination of the triphenylphosphine ligand provided a scaffold that maintained potency against a range of cancer cells but avoided inducing toxicity in zebrafish embryos at higher concentrations, displaying the potential of these Ru(II) compounds for anticancer applications. This study provides essential information regarding the role of ancillary ligands for the anticancer activity of Ru(II) coordination compounds that induce mitochondrial dysfunction.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Animales , 2,2'-Dipiridil , Ligandos , Pez Cebra , Mitocondrias , Rutenio/farmacología , Rutenio/metabolismo
3.
Inorg Chem ; 46(22): 9495-502, 2007 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-17902652

RESUMEN

Titanate(1-) complexes Na[(THF)(kappa1-O-bdbpzp)TiCl4] (1) and Na[(THF)(kappa1-O-bdmpzp)TiCl4] (2) and titanate(2-) complexes [Na(THF)]2[(kappa1-O-bdbpzp)2TiCl4] (4) and [Na(THF)]2[(kappa1-O-bdmpzp)2TiCl4] (5) were obtained in good yield from reaction of Na[bdbpzp] or Na[bdmpzp] (sodium salt of 1,3-bis(3,5-di-tert-butylpyrazol-1yl)propan-2-ol or 1,3-bis(3,5-dimethylpyrazol-1yl)propan-2-ol) with TiCl4 (in the appropriate molar ratio) at 0-25 degrees C. Protonolysis of TiCl4 with 1 equiv of bdmpzpH furnished related zwitterionic titanate(1-) complex 3 that possessed a kappa2-N,O-coordinated pyrazolyl-alkoxide with pendant pyrazolium group. Methylalumoxane (MAO) activation of 1-5 under high-temperature solution polymerization conditions produced active single-site ethylene polymerization catalysts that exhibit considerably higher thermal stability (especially 2/MAO, 3/MAO, and 5/MAO) than previously reported for Cp2TiCl2/MAO or Ti catalysts supported by related heteroscorpionate or scorpionate ligation.

4.
J Am Chem Soc ; 124(41): 12217-24, 2002 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-12371862

RESUMEN

Reactions between terminal alkynes or aromatic ketones and titanapinacolate complexes (DMSC)Ti(OCAr(2)CAr(2)O) (2, Ar = Ph, and 3, Ar = p-MeC(6)H(4); DMSC = 1,2-alternate dimethylsilyl-bridged p-tert-butylcalix[4]arene dianion) occur via rupture of the C-C bond of the titanacycle. Thus, reactions of 2 and 3 with terminal alkynes produce 2-oxatitanacyclopent-4-ene or 2-oxatitanacycloheptadiene complexes along with free Ar(2)CO. These compounds have been characterized spectroscopically and by X-ray crystallography. Because metallapinacolate intermediates have been implicated in important C-C bond-forming reactions, such as pinacol coupling and McMurry chemistry, the mechanism of the fragmentation reactions was studied. Analysis of the kinetics of the reaction of (DMSC)Ti[OC(p-MeC(6)H(4))(2)C(p-MeC(6)H(4))(2)O] (3) with Bu(t)Ctbd1;CH revealed that the fragmentation reactions proceed via a preequilibrium mechanism, involving reversible dissociation of titanapinacolate complexes into (DMSC)Ti(eta(2)-OCAr(2)) species with release of a ketone molecule, followed by rate-limiting reaction of (DMSC)Ti(eta(2)-OCAr(2)) species with an alkyne or ketone molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...