Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 259: 115013, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182301

RESUMEN

Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Biocombustibles/toxicidad , Biocombustibles/análisis , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Carcinógenos , Gasolina/análisis
2.
Sci Total Environ ; 801: 149659, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416602

RESUMEN

Soils hold three quarters of the total organic carbon (OC) stock in terrestrial ecosystems and yet we fundamentally lack detailed mechanistic understanding of the turnover of major soil OC pools. Black carbon (BC), the product of the incomplete combustion of fossil fuels and biomass, is ubiquitous in soils globally. Although BC is a major soil carbon pool, its effects on the global carbon cycle have not yet been resolved. Soil BC represents a large stable carbon pool turning over on geological timescales, but research suggests it can alter soil biogeochemical cycling including that of soil OC. Here, we established two soil microcosm experiments: experiment one added 13C OC to soil with and without added BC (soot or biochar) to investigate whether it suppresses OC mineralisation; experiment two added 13C BC (soot) to soil to establish whether it is mineralised in soil over a short timescale. Gases were sampled over six-months and analysed using isotope ratio mass spectrometry. In experiment one we found that the efflux of 13C OC from soil decreased over time, but the addition of soot to soil significantly reduced the mineralisation of OC from 32% of the total supplied without soot to 14% of the total supplied with soot. In contrast, there was not a significant difference after the addition of biochar in the flux of 13C from the OC added to the soil. In experiment two, we found that the efflux 13C from soil with added 13C soot significantly differed from the control, but this efflux declined over time. There was a cumulative loss of 0.17% 13C from soot over the experiment. These experimental results represent a step-change in understanding the influence of BC continuum on carbon dynamics, which has major consequences for the way we monitor and manage soils for carbon sequestration in future.


Asunto(s)
Suelo , Hollín , Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Hollín/análisis
3.
Environ Sci Technol ; 55(1): 571-580, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33295764

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic pollutants emitted by diesel engines, both in the gas phase and adsorbed onto the surface of particulate matter (PM). There remains limited understanding of the complex and dynamic competing mechanisms of PAH formation, growth and oxidation in the gas phase, and their adsorption onto soot and how these processes impact on the abundance and composition of exhaust PAH. Therefore, this paper presents analysis of gas and particulate samples taken from the cylinder and exhaust of a diesel engine during combustion of fossil diesel with the 16 US-EPA priority PAH species identified and quantified. In-cylinder results showed that gas-phase PAHs were more abundant than soot-bound PAHs in the engine cylinder. The in-cylinder PAHs included 2- to 6-ring PAHs; however, 6-ring PAHs were not observed in the soot samples collected from the engine exhaust. Levels of both PM and the total in-cylinder PAHs decreased following a peak at 10 CAD ATDC but subsequently increased significantly during the late combustion phase. The B[a]P equivalence of PM in the engine cylinder increased during the period of early diffusion to late combustion phase, following an initial decrease during the period of premixed to early diffusion combustion.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hollín , Emisiones de Vehículos/análisis
4.
J Anal Appl Pyrolysis ; 151: 104900, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32836580

RESUMEN

This paper concerns the effect of unsaturation of hydrocarbons (single, double, and triple bonds) on soot particle characteristics (mass, number, and size) and on the carcinogenicity of soot particles. The soot particles were produced from oxygen-free pyrolysis of five hydrocarbons, namely: propane, propylene, ethane, ethylene, and acetylene. The characteristics of soot particles were measured with the aid of a differential mobility spectrometer (Cambustion-DMS-500) and measurement of soot mass concentration was confirmed using gravimetric filter measurements. The soot particle carcinogenicity was estimated from the emission quantities of total polyaromatic hydrocarbons (PAHs) and the toxicity equivalent factor (TEF) of each PAH. Oxygen-free pyrolysis of the hydrocarbon fuels was conducted in a laminar tube reactor within the temperature range of 1050 -1350oC at a constant nitrogen flow rate of 20 L/min and constant fuel flow rate of 1% (vol) on carbon-1 basis. The experimental results showed that increasing unsaturation of fuels from single to double and to triple bonds increased the mass concentration, particle size, number concentration, and carcinogenicity of soot particle notably at the initial temperature of 1050 oC. Increase in the pyrolysis temperature of the tube reactor from 1050 - 1350oC, increased the mass concentration and sizes of the soot particle while the number concentration and carcinogenicity of the soot particle decreased. There was a positive correlation between the soot particle number and the corresponding soot particle carcinogenicity, while a negative correlation was observed between the soot particle mass and size with soot particle carcinogenicity regardless of the pyrolysis temperature examined. The potential implication of these observations is that, low-temperature combustion (LTC) applications, aimed at reducing emissions of soot and NOx, could produce higher soot particle number concentration of higher carcinogenicity.

5.
Waste Biomass Valorization ; 10(2): 253-264, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873245

RESUMEN

Spent coffee grounds (SCG) are a potentially valuable source of lipids for sustainable production of biofuels. However, there are several feedstock properties and solvent extraction parameters that can impact on the oil yield and quality, potentially reducing the possible environmental benefits of deriving oils from this waste stream. This study presents results of laboratory and pilot plant scale experimental investigations into lipid recovery from spent coffee, determining the effects of solvent extraction variables including duration, SCG-to-solvent ratio and SCG residual moisture. SCG samples from both the industrial production of instant coffee and retail coffee shops were characterized in terms of moisture content, particle size distribution and oil content to identify the impact of these variables on the efficiency of lipid recovery by solvent extraction. The dry weight oil content of the instant SCG samples ranged from 24.2 to 30.4% w/w, while the retail SCG samples contained considerably lower amounts of lipids with their oil content ranging between 13.4 and 14.8% w/w. The highest oil yields were found at an extraction duration of 8 h, while a moisture content of ~2% w/w led to increased yields relative to completely dry samples. A pattern of increasing acidity with decreasing extraction duration was observed, suggesting preferential extraction of free fatty acids (FFA), with the fatty acid (FA) profile of the oil found to be similar to lipids commonly utilized for biofuel production.

6.
Artículo en Inglés | MEDLINE | ID: mdl-25941673

RESUMEN

The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...