Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Neurosci ; 17: 1294567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099204

RESUMEN

Cocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh). Expanding upon these findings, we sought in the present investigation to elucidate molecular determinants of these phenomena. To that end, we first employed a secondary transcriptomic analysis and found that cocaine self-administration differentially regulates mRNA for fibroblast growth factor 13 (FGF13), which codes for a prominent auxiliary protein of the voltage-gated Na+ (Nav) channel, in the NAcSh of environmentally enriched rats (i.e., resilient behavioral phenotype) compared to environmentally isolated rats (susceptible phenotype). Based upon this finding, we used in vivo genetic silencing to study the causal functional and behavioral consequences of knocking down FGF13 in the NAcSh. Functional studies revealed that knockdown of FGF13 in the NAcSh augmented excitability of MSNs by increasing the activity of Nav channels. These electrophysiological changes were concomitant with a decrease in cocaine demand elasticity (i.e., susceptible phenotype). Taken together, these data support FGF13 as being protective against cocaine self-administration, which positions it well as a pharmacological target for CUD.

2.
J Neuroinflammation ; 20(1): 306, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115011

RESUMEN

BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.


Asunto(s)
Conducta de Enfermedad , Malaria Cerebral , Ratones , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Transducción de Señal
3.
PLoS One ; 18(12): e0296090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127939

RESUMEN

In humans, frustrating experiences are known to trigger relapse events and individuals with higher frustration intolerance show increased risk of developing substance use disorders (SUDs). Despite this clear relationship, frustration-related behavior is seldom studied concurrently with self-administration behavior in rodent models. A major obstacle has been the lack of robust, quantitative assays of frustration-related operant behavior thus far. In previous work, we identified increased bar press (BP) durations in response to frustrating conditions in rats self-administering natural or drug rewards. Here, to propose BP durations as a measure of frustration-related behavior, we conducted an operant successive negative contrast (oSNC) study and found that increases in BP durations are observed in the absence of increased effort, providing evidence that this is a psychological phenomenon. Moreover, we assess the viability of widespread use of BP duration measurements as a behavioral tool by quantifying performance as it pertains to sensitivity, robustness, replicability, and sex differences. We conclude that increases in BP durations are a highly sensitive psychological response to frustrating conditions and that this measure is robust, replicable, and applicable to both sexes.


Asunto(s)
Frustación , Motivación , Humanos , Ratas , Femenino , Masculino , Animales , Condicionamiento Operante/fisiología , Recompensa
4.
Life (Basel) ; 13(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37629512

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aß) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.

5.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35457230

RESUMEN

Glycogen synthase kinase 3ß (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3ß is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3ß is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3ß acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3ß. Here, we discuss the direct and indirect mechanisms by which GSK3ß phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3ß activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3ß-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neuronas , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Canales Iónicos/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas
6.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35163623

RESUMEN

In neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Nav channels with while impacting intrinsic excitability. To that end, we employed voltage-clamp electrophysiological recordings in heterologous cells expressing the Nav1.6 channel isoform and in hippocampal CA1 pyramidal neurons in the presence of triciribine, an inhibitor of Akt. We showed that in both systems, Akt inhibition resulted in a potentiation of peak transient Na+ current (INa) density. Akt inhibition correspondingly led to an increase in the action potential firing of the CA1 pyramidal neurons that was accompanied by a decrease in the action potential current threshold. Complementary confocal analysis in the CA1 pyramidal neurons showed that the inhibition of Akt is associated with the lengthening of Nav1.6 fluorescent intensity along the axonal initial segment (AIS), providing a mechanism for augmented neuronal excitability. Taken together, these findings provide evidence that Akt-mediated signal transduction might affect neuronal excitability in a Nav1.6-dependent manner.


Asunto(s)
Potenciales de Acción , Hipocampo/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Células HEK293 , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/fisiología
7.
Neuroinformatics ; 20(2): 513-523, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064871

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have been employed very successfully to identify molecular and cellular features of psychiatric disorders that would be impossible to discover in traditional postmortem studies. Despite the wealth of new available information though, there is still a critical need to establish quantifiable and accessible molecular markers that can be used to reveal the biological causality of the disease. In this paper, we introduce a new quantitative framework based on supervised learning to investigate structural alterations in the neuronal cytoskeleton of hiPSCs of schizophrenia (SCZ) patients. We show that, by using Support Vector Machines or selected Artificial Neural Networks trained on image-based features associated with somas of hiPSCs derived neurons, we can predict very reliably SCZ and healthy control cells. In addition, our method reveals that [Formula: see text]III tubulin and FGF12, two critical components of the cytoskeleton, are differentially regulated in SCZ and healthy control cells, upon perturbation by GSK3 inhibition.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Esquizofrenia , Factores de Crecimiento de Fibroblastos , Glucógeno Sintasa Quinasa 3 , Humanos , Esquizofrenia/diagnóstico por imagen , Tubulina (Proteína)
8.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948337

RESUMEN

Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein-protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Neuronas/metabolismo , Peptidomiméticos/farmacología , Dominios Proteicos , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Unión Proteica
9.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831326

RESUMEN

Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein-protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Sustancias Macromoleculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo
10.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34607807

RESUMEN

Frustrative nonreward (FN) is a construct in the Negative Valence Systems domain of the Research Domain Criteria (RDoC) from the National Institute of Mental Health. An organism's response to frustrating situations (e.g., inability to obtain an expected reward) has broad implications for a variety of neuropsychiatric conditions, including substance use disorders. The current project developed a first of its kind rat operant behavioral model of FN based loosely on the human Point Subtraction Aggression Paradigm (PSAP). The current study shows that individual differences in FN for sucrose pellets are consistent across sessions at baseline and that the task is sensitive to reward size in male rats. More importantly, high FN behavior for sucrose predicts early "breaking" for intravenous fentanyl self-administration under a progressive ratio (PR) schedule. These results solidify frustration/ FN as an important factor for substance use disorders in addition to craving, impulsivity, and habit.


Asunto(s)
Frustación , Motivación , Animales , Fentanilo , Individualidad , Masculino , Ratas , Sacarosa
11.
Front Mol Biosci ; 8: 742903, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557523

RESUMEN

The voltage-gated Na+ (Nav) channel is a primary molecular determinant of the initiation and propagation of the action potential. Despite the central role of the pore-forming α subunit in conferring this functionality, protein:protein interactions (PPI) between the α subunit and auxiliary proteins are necessary for the full physiological activity of Nav channels. In the central nervous system (CNS), one such PPI occurs between the C-terminal domain of the Nav1.6 channel and fibroblast growth factor 14 (FGF14). Given the primacy of this PPI in regulating the excitability of neurons in clinically relevant brain regions, peptides targeting the FGF14:Nav1.6 PPI interface could be of pre-clinical value. In this work, we pharmacologically evaluated peptides derived from FGF14 that correspond to residues that are at FGF14's PPI interface with the CTD of Nav1.6. These peptides, Pro-Leu-Glu-Val (PLEV) and Glu-Tyr-Tyr-Val (EYYV), which correspond to residues of the ß12 sheet and ß8-ß9 loop of FGF14, respectively, were shown to inhibit FGF14:Nav1.6 complex assembly. In functional studies using whole-cell patch-clamp electrophysiology, PLEV and EYYV were shown to confer differential modulation of Nav1.6-mediated currents through mechanisms dependent upon the presence of FGF14. Crucially, these FGF14-dependent effects of PLEV and EYYV on Nav1.6-mediated currents were further shown to be dependent on the N-terminal domain of FGF14. Overall, these data suggest that the PLEV and EYYV peptides represent scaffolds to interrogate the Nav1.6 channel macromolecular complex in an effort to develop targeted pharmacological modulators.

12.
Front Mol Neurosci ; 14: 643860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276302

RESUMEN

The axon initial segment (AIS) is a highly regulated subcellular domain required for neuronal firing. Changes in the AIS protein composition and distribution are a form of structural plasticity, which powerfully regulates neuronal activity and may underlie several neuropsychiatric and neurodegenerative disorders. Despite its physiological and pathophysiological relevance, the signaling pathways mediating AIS protein distribution are still poorly studied. Here, we used confocal imaging and whole-cell patch clamp electrophysiology in primary hippocampal neurons to study how AIS protein composition and neuronal firing varied in response to selected kinase inhibitors targeting the AKT/GSK3 pathway, which has previously been shown to phosphorylate AIS proteins. Image-based features representing the cellular pattern distribution of the voltage-gated Na+ (Nav) channel, ankyrin G, ßIV spectrin, and the cell-adhesion molecule neurofascin were analyzed, revealing ßIV spectrin as the most sensitive AIS protein to AKT/GSK3 pathway inhibition. Within this pathway, inhibition of AKT by triciribine has the greatest effect on ßIV spectrin localization to the AIS and its subcellular distribution within neurons, a phenotype that Support Vector Machine classification was able to accurately distinguish from control. Treatment with triciribine also resulted in increased excitability in primary hippocampal neurons. Thus, perturbations to signaling mechanisms within the AKT pathway contribute to changes in ßIV spectrin distribution and neuronal firing that may be associated with neuropsychiatric and neurodegenerative disorders.

13.
Curr Top Med Chem ; 21(10): 841-848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34036922

RESUMEN

Given their primacy in governing the action potential (AP) of excitable cells, voltage-gated Na+ (Nav) channels are important pharmacological targets of therapeutics for a diverse array of clinical indications. Despite historically being a traditional drug target, therapeutics targeting Nav channels lack isoform selectivity, giving rise to off-target side effects. To develop isoform-selective modulators of Nav channels with improved target-specificity, the identification and pharmacological targeting of allosteric sites that display structural divergence among Nav channel isoforms represents an attractive approach. Despite the high homology among Nav channel α subunit isoforms (Nav1.1-Nav1.9), there is considerable amino acid sequence divergence among their constituent C-terminal domains (CTD), which enables structurally and functionally specific protein: protein interactions (PPI) with auxiliary proteins. Although pharmacological targeting of such PPI interfaces between the CTDs of Nav channels and auxiliary proteins represents an innovate approach for developing isoform-selective modulators of Nav channels, appreciable modulation of PPIs using small molecules has conventionally been difficult to achieve. After briefly discussing the challenges of modulating PPIs using small molecules, this current frontier review that follows subsequently expounds on approaches for circumventing such difficulties in the context of developing small molecule modulators of PPIs between transmembrane ion channels and their auxiliary proteins. In addition to broadly discussing such approaches, the implementation of such approaches is specifically discussed in the context of developing small molecule modulators between the CTD of Nav channels and auxiliary proteins. Developing allosteric modulators of ion channels by targeting their PPI interfaces with auxiliary proteins represents an innovative and promising strategy in ion channel drug discovery that could expand the "druggable genome" and usher in first-in-class PPI-targeting therapeutics for a multitude of channelopathies.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Simulación por Computador , Descubrimiento de Drogas , Humanos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
14.
Neuropsychopharmacology ; 46(3): 673-682, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288841

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) allow for the establishment of brain cellular models of psychiatric disorders that account for a patient's genetic background. Here, we conducted an RNA-sequencing profiling study of hiPSC-derived cell lines from schizophrenia (SCZ) subjects, most of which are from a multiplex family, from the population isolate of the Central Valley of Costa Rica. hiPSCs, neural precursor cells, and cortical neurons derived from six healthy controls and seven SCZ subjects were generated using standard methodology. Transcriptome from these cells was obtained using Illumina HiSeq 2500, and differential expression analyses were performed using DESeq2 (|fold change|>1.5 and false discovery rate < 0.3), in patients compared to controls. We identified 454 differentially expressed genes in hiPSC-derived neurons, enriched in pathways including phosphoinositide 3-kinase/glycogen synthase kinase 3 (PI3K/GSK3) signaling, with serum-glucocorticoid kinase 1 (SGK1), an inhibitor of glycogen synthase kinase 3ß, as part of this pathway. We further found that pharmacological inhibition of downstream effectors of the PI3K/GSK3 pathway, SGK1 and GSK3, induced alterations in levels of neurite markers ßIII tubulin and fibroblast growth factor 12, with differential effects in patients compared to controls. While demonstrating the utility of hiPSCs derived from multiplex families to identify significant cell-specific gene network alterations in SCZ, these studies support a role for disruption of PI3K/GSK3 signaling as a risk factor for SCZ.


Asunto(s)
Células-Madre Neurales , Esquizofrenia , Genómica , Glucógeno Sintasa Quinasa 3/genética , Humanos , Neuronas , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Esquizofrenia/genética
15.
Neuropharmacology ; 183: 108398, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181146

RESUMEN

Substance use disorders for cocaine are major public health concerns with few effective treatment options. Therefore, identification of novel pharmacotherapeutic targets is critical for future therapeutic development. Evolution has ensured that genes are expressed largely only where they are needed. Therefore, examining the gene expression landscape of the nucleus accumbens shell (NAcSh), a brain region important for reward related behaviors, may lead to the identification of novel targets for cocaine use disorder. In this study, we conducted a novel two-step topographic transcriptomic analysis using five seed transcripts with enhanced expression in the NAcSh to identify transcripts with similarly enhanced expression utilizing the correlation feature to search the more than 20,000 in situ hybridization experiments of the Allen Mouse Brain Atlas. Transcripts that correlated with at least three seed transcripts were analyzed with Ingenuity Pathway Analysis (IPA). We identified 7-fold more NAcSh-enhanced transcripts than our previous analysis using single voxels in the NAcSh as the seed. Analysis of the resulting transcripts with IPA identified many previously identified signaling pathways such as retinoic acid signaling as well as novel pathways. Manipulation of the retinoic acid pathway specifically in the NAcSh of male rats via viral vector-mediated RNA interference targeting fatty acid binding protein 5 (FABP5) decreased cocaine self-administration and modulates excitability of medium spiny neurons in the NAcSh. These results not only validate the prospective strategy of conducting a topographic transcriptomic analysis, but also further validate retinoic acid signaling as a promising pathway for pharmacotherapeutic development against cocaine use disorder.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Proteínas del Ojo/fisiología , Proteínas de Unión a Ácidos Grasos/deficiencia , Proteínas de Unión a Ácidos Grasos/fisiología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/fisiología , Núcleo Accumbens/metabolismo , Transcriptoma , Potenciales de Acción/efectos de los fármacos , Animales , Cocaína/farmacología , Expresión Génica , Masculino , Núcleo Accumbens/fisiología , Ratas , Ratas Sprague-Dawley , Autoadministración , Tretinoina/metabolismo
16.
Methods Mol Biol ; 2188: 191-228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33119853

RESUMEN

As key players in cell function, ion channels are important targets for drug discovery and therapeutic development against a wide range of health conditions. Thus, developing assays to reconstitute ion channel macromolecular complexes in physiological conditions and screen for chemical modifiers of protein-protein interactions within these complexes is timely in drug discovery campaigns. For most ion channels, expressing their pore-forming subunit in heterologous mammalian cells has now become a routine procedure. However, reconstituting protein-channel complexes in physiological environments is still challenging, limiting our ability to identify tools and probes based on allosteric mechanisms, which could lead to more targeted and precise modulation of the channel function. Here, we describe the assay development steps to stably reconstitute the interaction between voltage-gated Na+ (Nav) channel Nav1.6 and its accessory protein, fibroblast growth factor 14 (FGF14) using the split-luciferase complementation assay (LCA), followed by assay miniaturization and optimization in 384-well plates for in-cell high-throughput screening (HTS) against protein-channel interactions. This optimized LCA can subsequently be used for rapid estimation of hit potency and efficacy via dose-dependency studies, enabling ranking of hits prior to more labor-intensive validation studies. Lastly, we introduce the methodology for rapid functional hit validation studies using semi-automated planar patch-clamp electrophysiology. Our robust, in-cell HTS platform can be adapted to any suitable ion channel complex to explore regulatory pathways of cellular signaling using kinase inhibitors, as well as to screen small molecules for probe development and drug repurposing toward new targets/areas of medicine. Overall, the flexibility of this assay allows users to broadly explore therapeutic options for channelopathy-associated diseases at a fast pace, enabling rapid hypothesis generation in early phase drug discovery campaigns and narrowing down targets prior to more labor-intensive in vivo studies.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Canales Iónicos/metabolismo , Mediciones Luminiscentes/métodos , Mapeo de Interacción de Proteínas/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Descubrimiento de Drogas , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Canales Iónicos/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Mapas de Interacción de Proteínas , Transfección/métodos
17.
J Med Chem ; 63(20): 11522-11547, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33054193

RESUMEN

The voltage-gated Na+ (Nav) channel is the molecular determinant of excitability. Disruption of protein-protein interactions (PPIs) between Nav1.6 and fibroblast growth factor 14 (FGF14) leads to impaired excitability of neurons in clinically relevant brain areas associated with channelopathies. Here, we designed, synthesized, and pharmacologically characterized new peptidomimetics based on a PLEV tetrapeptide scaffold derived from the FGF14:Nav1.6 PPI interface. Addition of an N-terminal 1-adamantanecarbonyl pharmacophore significantly improved peptidomimetic inhibitory potency. Surface plasmon resonance studies revealed that while this moiety was sufficient to confer binding to FGF14, altering the C-terminal moiety from methoxy (21a) to π bond-containing (23a and 23b) or cycloalkane substituents (23e) abrogated the binding to Nav1.6. Whole-cell patch-clamp electrophysiology subsequently revealed that 21a had functionally relevant interactions with both the C-terminal tail of Nav1.6 and FGF14. Collectively, these findings support that 21a (PW0564) may serve as a promising lead to develop target-selective neurotherapeutics by modulating protein-channel interactions.


Asunto(s)
Diseño de Fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Oligopéptidos/síntesis química , Peptidomiméticos/síntesis química , Prueba de Complementación Genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Luciferasas/genética , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligopéptidos/química , Oligopéptidos/farmacología , Técnicas de Placa-Clamp , Peptidomiméticos/química , Peptidomiméticos/farmacología , Unión Proteica , Relación Estructura-Actividad
18.
Physiol Rep ; 8(14): e14505, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32671946

RESUMEN

The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/química , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
19.
Molecules ; 25(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722255

RESUMEN

Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the ß8-ß9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/farmacología , Regulación Alostérica , Sitios de Unión , Diseño de Fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Canal de Sodio Activado por Voltaje NAV1.6/química , Peptidomiméticos/química , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína
20.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118786, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32599005

RESUMEN

BACKGROUND: Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS: Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS: Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS: These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Janus Quinasa 2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Factores de Crecimiento de Fibroblastos/química , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Hipocampo/citología , Humanos , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Reproducibilidad de los Resultados , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...