Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38767794

RESUMEN

Macroalgae provide key contributions to aquatic ecosystems, including their role as primary producers and the provision of biotopes for marine organisms, fish spawning, and fish nurseries. The aim of this study was to evaluate the feasibility of a micronucleus test and a comet assay in Ceramium tenuicorne, a red macroalga. This alga is widely distributed in marine ecosystems and brackish waters, and is therefore a potential bioindicator of the effects of anthropogenic pollution in these ecosystems. Unfortunately, the two genotoxicity tests evaluated were not suitable for this alga because the nuclei are generally very small (between 2 and 10 µm), are variable in size, and there may be several nuclei in each cell (between 1 and 5 in our observations). However, the present study allowed us to define conditions for observing these algal cells and optimizing the choice of DNA dye (orcein), cell fixation solution (Carnoy's solution), and hydrolysis step (HCl, 1200 mmol/L solution for 1 min). This research allowed us to propose two genotoxicity and cytotoxicity endpoints for assessing chemical effects on the algal cells: counting of nuclei in cortical cell areas, and the frequency of axial cells in mitosis. These two criteria were measured after exposing C. tenuicorne to two reference substances: cadmium chloride and maleic hydrazide, and we highlight the effects from 1 × 10-5 M of CdCl2 and 5 × 10-5 M of maleic hydrazide.

2.
Ecotoxicol Environ Saf ; 266: 115582, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862747

RESUMEN

Standardised tests are often used to determine the ecotoxicity of chemicals and focus mainly on one or a few generic endpoints (e.g. mortality, growth), but information on the sub-cellular processes leading to these effects remain usually partial or missing. Flow cytometry (FCM) can be a practical tool to study the physiological responses of individual cells (such as microalgae) exposed to a stress via the use of fluorochromes and their morphology and natural autofluorescence. This work aimed to assess the effects of five chlorine-based disinfection by-products (DBPs) taken individually on growth and sub-cellular endpoints of the green microalgae Raphidocelis subcapitata. These five DBPs, characteristic of a chlorinated effluent, are the following monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), bromochloroacetic acid (BCAA) and 1,1-dichloropropan-2-one (1,1-DCP). Results showed that 1,1-DCP had the strongest effect on growth inhibition (EC50 = 1.8 mg.L-1), followed by MCAA, TCAA, BCAA and DCAA (EC50 of 10.1, 15.7, 27.3 and 64.5 mg.L-1 respectively). Neutral lipid content, reactive oxygen species (ROS) formation, red autofluorescence, green autofluorescence, size and intracellular complexity were significantly affected by the exposure to the five DBPs. Only mitochondrial membrane potential did not show any variation. Important cellular damages (>10%) were observed for only two of the chemicals (BCAA and 1,1-DCP) and were probably due to ROS formation. The most sensitive and informative sub-lethal parameter studied was metabolic activity (esterase activity), for which three types of response were observed. Combining all this information, an adverse outcome pathways framework was proposed to explain the effect of the targeted chemicals on R. subcapitata. Based on these results, both FCM sub-cellular analysis and conventional endpoint of algal toxicity were found to be complementary approaches.


Asunto(s)
Rutas de Resultados Adversos , Microalgas , Desinfección/métodos , Citometría de Flujo , Especies Reactivas de Oxígeno , Ácido Tricloroacético/análisis , Ácido Tricloroacético/toxicidad , Ácido Dicloroacético/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...