Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10311, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365288

RESUMEN

When entering the oviduct for fertilisation, spermatozoa come into contact with the oviduct fluid (OF) and can bind to luminal epithelial cells in the isthmus to form a sperm reservoir. The objective of this study was to examine how the OF modulates sperm adhesion to the oviduct reservoir using an in vitro model of oviduct epithelial spheroids (OES). Bovine oviducts from a local slaughterhouse were used to collect OF and isthmic fragments for the in vitro incubation of OES. Compared to a non-capacitating control medium, the pre-ovulatory OF significantly decreased by 80-90% the density of spermatozoa bound to OES without affecting sperm motility, membrane integrity, or sperm-cilia interactions. This effect on sperm binding was reproduced with (1) OF from different cycle stages and anatomical regions of the oviduct; (2) OF fractions of more than 3 kDa; (3) modified OF in which proteins were denatured or digested and (4) heparan sulphate but not hyaluronic acid, two glycosaminoglycans present in the OF. In conclusion, the OF significantly decreased the number of spermatozoa that bind to oviduct epithelial cells without affecting sperm motility and this effect was due to macromolecules, including heparan sulphate.


Asunto(s)
Glicosaminoglicanos , Motilidad Espermática , Femenino , Humanos , Masculino , Animales , Bovinos , Glicosaminoglicanos/metabolismo , Semen/metabolismo , Oviductos/metabolismo , Trompas Uterinas/metabolismo , Espermatozoides/metabolismo , Heparitina Sulfato/metabolismo
2.
Biol Reprod ; 96(3): 531-541, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339853

RESUMEN

Apoptotic activity is a common physiological process which culminates at the blastocyst stage in the preimplantation embryo of many mammals. The degree of embryonic cell death can be influenced by the oocyte microenvironment. However, the prognostic significance of the incidence of apoptosis remains undefined. Prostaglandin E2 (PGE2) derived from prostaglandin G/H synthase-2 (PTGS2) activity is a well-known prosurvival factor that is mainly studied in oncology. PGE2 is the predominant PTGS2-derived prostaglandin present in the oocyte microenvironment during the periconceptional period. Using an in vitro model of bovine embryo production followed by transfer and collection procedures, we investigated the impact of periconceptional PGE2 on the occurrence of spontaneous apoptosis in embryos and on subsequent in vivo posthatching development. Different periconceptional PGE2 environments were obtained using NS-398, a specific inhibitor of PTGS2 activity, and exogenous PGE2. We assessed the level of embryonic cell death in blastocysts at day 8 postfertilization by counting total cell numbers, by the immunohistochemical staining of active caspase-3, and by quantifying terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling signals and apoptosis regulator (BCL-2/BAX) mRNA expression. Morphometric parameters were used to estimate the developmental stage of the embryonic disk and the extent of trophoblast elongation on day 15 conceptuses. Our findings indicate that periconceptional PGE2 signaling durably impacts oocytes, conferring increased resistance to spontaneous apoptosis in blastocysts and promoting embryonic disk development and the elongation process during preimplantation development.


Asunto(s)
Apoptosis , Blastocisto/fisiología , Dinoprostona/fisiología , Desarrollo Embrionario , Animales , Blastocisto/citología , Bovinos , Femenino , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Embarazo , Prostaglandina-Endoperóxido Sintasas/metabolismo
3.
Reprod Fertil Dev ; 29(9): 1868-1881, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27851888

RESUMEN

In in vitro-produced (IVP) bovine embryos, a burst in transcriptional activation of the embryonic genome (EGA) occurs at the 8-16-cell stage. To examine transcriptional regulation prior to EGA, notably in response to heat stress, we asked (1) whether the spontaneous expression of a luciferase transgene that is driven by the minimal mouse heat-shock protein 1b (hspa1b) gene promoter paralleled that of HSPA1A during EGA in IVP bovine embryo and (2) whether expression of the endogenous heat-inducible iHSPA group member HSPA1A gene and the hspa1b/luciferase transgene were induced by heat stress (HS) prior to EGA. Using two culture systems, we showed that luciferase activity levels rose during the 40-h long EGA-associated cell cycle. In contrast, iHSPA proteins were abundant in matured oocytes and in blastomeres from the two-cell to the 16-cell stages. However, normalised results detected a rise in the level of HSPA1A and luciferase mRNA during EGA, when transcription was required for their protein expression. Prior to EGA, HS-induced premature luciferase activity and transgene expression were clearly inhibited. We could not, however, establish whether this was also true for HSPA1A expression because of the decay of the abundant maternal transcripts prior to EGA. In bovine embryos, heat-induced expression of hspa1b/luciferase, and most likely of HSPA1A, was therefore strictly dependent on EGA. The level of the heat-shock transcription factor 1 molecules that were found in cell nuclei during embryonic development correlated better with the embryo's capacity for heat-shock response than with EGA-associated gene expression.


Asunto(s)
Blastocisto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Animales , Bovinos , Técnicas de Cultivo de Embriones/veterinaria , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Calor , Embarazo
4.
Biol Reprod ; 95(6): 123, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27760750

RESUMEN

The first lineage specification during mammalian embryo development can be visually distinguished at the blastocyst stage. Two cell lineages are observed on the embryonic-abembryonic axis of the blastocyst: the inner cell mass and the trophectoderm. The timing and mechanisms driving this process are still not fully understood. In mouse embryos, cells seem prepatterned to become certain cell lineage because the first cleavage plane has been related with further embryonic-abembryonic axis at the blastocyst stage. Nevertheless, this possibility has been very debatable. Our objective was to determine whether this would be the case in another mammalian species, the bovine. To achieve this, cells of in vitro produced bovine embryos were traced from the 2-cell stage to the blastocyst stage. Blastocysts were then classified according to the allocation of the labeled cells in the embryonic and/or abembryonic part of the blastocyst. Surprisingly, we found that there is a significant percentage of the embryos (∼60%) with labeled and nonlabeled cells randomly distributed and intermingled. Using time-lapse microscopy, we have identified the emergence of this random pattern at the third to fourth cell cycle, when cells started to intermingle. Even though no differences were found on morphokinetics among different embryos, these random blastocysts and those with labeled cells separated by the embryonic-abembryonic axis (deviant pattern) are significantly bigger; moreover deviant embryos have a significantly higher number of cells. Interestingly, we observed that daughter cells allocation at the blastocyst stage is not affected by biopsies performed at an earlier stage.


Asunto(s)
Blastocisto/citología , Blastómeros/citología , Linaje de la Célula/fisiología , Desarrollo Embrionario/fisiología , Animales , Blastocisto/metabolismo , Blastómeros/metabolismo , Bovinos , Metilación de ADN , Histonas/metabolismo
5.
Cell Reprogram ; 14(6): 497-504, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23194453

RESUMEN

The somatic cell nuclear transfer (SCNT) procedure requires nuclear remodeling to return differentiated somatic nuclei to the totipotent undifferentiated stage. We hypothesize that mechanical constraints might occur upon SCNT and thereby affect nuclear remodeling. Therefore, we analyzed the nuclear structures upon SCNT using as donors either wild-type fibroblasts with a dense vimentin network or vimentin-deprived cells [embryonic stem cells (ESCs) and fibroblasts invalidated for vimetin]. We demonstrated that following nuclear transfer of wild-type fibroblasts, vimentin intermediate filaments (IFs) persisted around the transplanted nuclei and 88% of them presented severe distortions. We also showed that the presence of vimentin filaments in the reconstructed embryos was correlated with DNA damage, as evidenced by γH2A.X foci. On the other hand, when ESCs or vimentin-null (Vim(-/-)) fibroblasts devoid of IFs were used as nuclear donors, no nuclear distortion and less DNA damage were observed. Altogether we believe that the introduction of vimentin into recipient oocytes during SCNT induces a mechanical constraint on the transplanted nucleus that is responsible for nuclear distortions and DNA damage. This could lead to incomplete reprogramming that would be detrimental to further embryonic development.


Asunto(s)
Núcleo Celular/metabolismo , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Filamentos Intermedios/metabolismo , Técnicas de Transferencia Nuclear , Vimentina/metabolismo , Animales , Núcleo Celular/genética , Células Cultivadas , Desarrollo Embrionario , Células Madre Embrionarias/citología , Fibroblastos/citología , Ratones , Ratones Mutantes , Vimentina/genética
6.
PLoS One ; 7(3): e34110, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479535

RESUMEN

Pluripotency genes are implicated in mouse embryonic genome activation (EGA) and pluripotent lineage specification. Moreover, their expression levels have been correlated with embryonic term development. In bovine, however, little information is available about dynamics of pluripotency genes during these processes. In this study, we charted quantitative and/or qualitative spatio-temporal expression patterns of transcripts and proteins of pluripotency genes (OCT4, SOX2 and NANOG) and mRNA levels of some of their downstream targets in bovine oocytes and early embryos. Furthermore, to correlate expression patterns of these genes with term developmental potential, we used cloned embryos, having similar in vitro but different full term development rates. Our findings affirm: firstly, the core triad of pluripotency genes is probably not implicated in bovine EGA since their proteins were not detected during pre-EGA phase, despite the transcripts for OCT4 and SOX2 were present. Secondly, an earlier ICM specification of transcripts and proteins of SOX2 and NANOG makes them pertinent candidates of bovine pluripotent lineage specification than OCT4. Thirdly, embryos with low term development potential have higher transcription rates; nevertheless, precarious balance between pluripotency genes is maintained. This balance presages normal in vitro development but, probably higher transcription rate disturbs it at later stage that abrogates term development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Células Madre Pluripotentes/citología , Animales , Bovinos , Linaje de la Célula , Clonación de Organismos , Fertilización In Vitro , Fibroblastos/citología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Ratones , Proteína Homeótica Nanog , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Oocitos/citología , Factores de Transcripción SOXB1/biosíntesis , Factores de Tiempo
7.
Biol Reprod ; 84(6): 1248-57, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21293029

RESUMEN

During the periovulatory period, the induction of prostaglandin G/H synthase-2 (PTGS2) expression in cumulus cells and associated prostaglandin E2 (PGE2) production are implicated in the terminal differentiation of the cumulus-oocyte complex. During the present study, the effects of the PTGS2/PGE2 pathway on the developmental competence of bovine oocytes were investigated using an in vitro model of maturation, fertilization, and early embryonic development. The specific inhibition of PTGS2 activity with NS-398 during in vitro maturation (IVM) significantly restricted mitogen-activated protein kinase (MAPK) activation in oocytes at the germinal vesicle breakdown stage and reduced both cumulus expansion and the maturation rate after 22 h of culture. In addition, significantly higher rates of abnormal meiotic spindle organization were observed after 26 h of culture. Periconceptional PTGS2 inhibition did not affect fertilization but significantly reduced the speed of embryo development. Embryo output rates were significantly decreased on Day 6 postfertilization but not on Day 7. However, total blastomere number was significantly lower in embryos obtained after PTGS2 inhibition. The addition of PGE2 to IVM and in vitro fertilization cultures containing NS-398 overrode oocyte maturation and early embryonic developmental defects. Protein and mRNA expression for the prostaglandin E receptor PTGER2 were found in oocytes, whereas the PTGER2, PTGER3, and PTGER4 subtypes were expressed in cumulus cells. This study is the first to report the involvement of PGE2 in oocyte MAPK activation during the maturation process. Taken together, these results indicate that PGE2-mediated interactions between somatic and germ cells during the periconceptional period promote both in vitro oocyte maturation and preimplantation embryonic development in cattle.


Asunto(s)
Bovinos/embriología , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Meiosis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oocitos/metabolismo , Animales , Células Cultivadas , Células del Cúmulo/metabolismo , Ciclooxigenasa 2/genética , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Oocitos/citología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...