Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(5): 567-593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39086373

RESUMEN

Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.

2.
Front Cardiovasc Med ; 11: 1374881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045008

RESUMEN

Background: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods: We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results: In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions: While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.

3.
J Cardiovasc Magn Reson ; 26(2): 101045, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795790

RESUMEN

BACKGROUND: Novel treatment strategies are needed to improve the structure and function of the myocardium post-infarction. In vitro-matured pluripotent stem cell-derived cardiomyocytes (PSC-CMs) have been shown to be a promising regenerative strategy. We hypothesized that mature PSC-CMs will have anisotropic structure and improved cell alignment when compared to immature PSC-CMs using cardiovascular magnetic resonance (CMR) in a guinea pig model of cardiac injury. METHODS: Guinea pigs (n = 16) were cryoinjured on day -10, followed by transplantation of either 108 polydimethylsiloxane (PDMS)-matured PSC-CMs (n = 6) or 108 immature tissue culture plastic (TCP)-generated PSC-CMs (n = 6) on day 0. Vehicle (sham-treated) subjects were injected with a pro-survival cocktail devoid of cells (n = 4), while healthy controls (n = 4) did not undergo cryoinjury or treatment. Animals were sacrificed on either day +14 or day +28 post-transplantation. Animals were imaged ex vivo on a 7T Bruker MRI. A 3D diffusion tensor imaging (DTI) sequence was used to quantify structure via fractional anisotropy (FA), mean diffusivity (MD), and myocyte alignment measured by the standard deviation of the transverse angle (TA). RESULTS: MD and FA of mature PDMS grafts demonstrated anisotropy was not significantly different than the healthy control hearts (MD = 1.1 ± 0.12 × 10-3 mm2/s vs 0.93 ± 0.01 × 10-3 mm2/s, p = 0.4 and FA = 0.22 ± 0.05 vs 0.26 ± 0.001, p = 0.5). Immature TCP grafts exhibited significantly higher MD than the healthy control (1.3 ± 0.08 × 10-3 mm2/s, p < 0.05) and significantly lower FA than the control (0.12 ± 0.02, p < 0.05) but were not different from mature PDMS grafts in this small cohort. TA of healthy controls showed low variability and was not significantly different than mature PDMS grafts (p = 0.4) while immature TCP grafts were significantly different (p < 0.001). DTI parameters of mature graft tissue trended toward that of the healthy myocardium, indicating the grafted cardiomyocytes may have a similar phenotype to healthy tissue. Contrast-enhanced magnetic resonance images corresponded well to histological staining, demonstrating a non-invasive method of localizing the repopulated cardiomyocytes within the scar. CONCLUSIONS: The DTI measures within graft tissue were indicative of anisotropic structure and showed greater myocyte organization compared to the scarred territory. These findings show that MRI is a valuable tool to assess the structural impacts of regenerative therapies.

4.
Biomolecules ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38254663

RESUMEN

The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.


Asunto(s)
Quinasa de la Caseína I , Conexina 43 , Miocitos Cardíacos , Adulto , Animales , Humanos , Ratones , Quinasa de la Caseína I/genética , Conexina 43/genética , Conexinas , Uniones Comunicantes , Ratones Transgénicos , Mutación
5.
Mater Today Bio ; 24: 100917, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38234461

RESUMEN

Application of cardiac patches to the heart surface can be undertaken to provide support and facilitate regeneration of the damaged cardiac tissue following ischemic injury. Biomaterial composition is an important consideration in the design of cardiac patch materials as it governs host response to ultimately prevent the undesirable fibrotic response. Here, we investigate a novel patch material, poly (itaconate-co-citrate-co-octanediol) (PICO), in the context of cardiac implantation. Citric acid (CA) and itaconic acid (ITA), the molecular components of PICO, provided a level of protection for cardiac cells during ischemic reperfusion injury in vitro. Biofabricated PICO patches were shown to degrade in accelerated and hydrolytic conditions, with CA and ITA being released upon degradation. Furthermore, the host response to PICO patches after implantation on rat epicardium in vivo was explored and compared to two biocompatible cardiac patch materials, poly (octamethylene (anhydride) citrate) (POMaC) and poly (ethylene glycol) diacrylate (PEGDA). PICO patches resulted in less macrophage infiltration and lower foreign body giant cell reaction compared to the other materials, with corresponding reduction in smooth muscle actin-positive vessel infiltration into the implant region. Overall, this work demonstrates that PICO patches release CA and ITA upon degradation, both of which demonstrate cardioprotective effects on cardiac cells after ischemic injury, and that PICO patches generate a reduced inflammatory response upon implantation to the heart compared to other materials, signifying promise for use in cardiac patch applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...