Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(24): 4298-4310, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38048522

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder caused by accumulation of amyloid-ß oligomers (AßO) in the brain, neuroinflammation, oxidative stress, and cognitive decline. Grandisin, a tetrahydrofuran neolignan, exhibits relevant anti-inflammatory and antioxidant properties. Interestingly, grandisin-based compounds were shown to prevent AßO-induced neuronal death in vitro. However, no study has assessed the effect of these compounds on the AD animal model. This study focuses on a triazole grandisin analogue (TGA) synthesized using simplification and bioisosteric drug design, which resulted in improved potency and solubility compared with the parent compound. This study aimed to investigate the possible in vivo effects of TGA against AßO-induced AD. Male C57/Bl6 mice underwent stereotaxic intracerebroventricular AßO (90 µM) or vehicle injections. 24 h after surgery, animals received intraperitoneal treatment with TGA (1 mg/kg) or vehicle, administered on a 14 day schedule. One day after treatment completion, a novel object recognition task (NORT) was performed. Memantine (10 mg/kg) was administered as a positive control. NORT retention sessions were performed on days 8 and 16 after AßO injection. Immediately after retention sessions, animals were euthanized for cortex and hippocampus collection. Specimens were subjected to oxidative stress and cytokine analyses. TGA reduced the level of cortex/hippocampus lipoperoxidation and prevented cognitive impairment in AßO-injected mice. Additionally, TGA reduced tumor necrosis factor (TNF) and interferon-γ (IFN-γ) levels in the hippocampus. By contrast, memantine failed to prevent cortex/hippocampus lipid peroxidation, recognition memory decline, and AßO-induced increases in TNF and IFN-γ levels in the hippocampus. Thus, memantine was unable to avoid the AßO-induced persistent cognitive impairment. The results showed that TGA may prevent memory impairment by exerting antioxidant and anti-inflammatory effects in AßO-injected mice. Moreover, TGA exhibited a persistent neuroprotective effect compared to memantine, reflecting an innovative profile of this promising agent against neurodegenerative diseases, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Lignanos , Fármacos Neuroprotectores , Ratones , Masculino , Animales , Péptidos beta-Amiloides/metabolismo , Memantina/farmacología , Antioxidantes/farmacología , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Lignanos/farmacología , Furanos/farmacología , Antiinflamatorios/farmacología , Fármacos Neuroprotectores/farmacología , Hipocampo/metabolismo
2.
Pflugers Arch ; 475(3): 291-307, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695881

RESUMEN

The cardiac baroreflex is an autonomic neural mechanism involved in the modulation of the cardiovascular system. It influences the heart rate and peripheral vascular resistance to preserve arterial blood pressure within a narrow variation range. This mechanism is mainly controlled by medullary nuclei located in the brain stem. However, supramedullary areas, such as the ventral portion of medial prefrontal cortex (vMPFC), are also involved. Particularly, the glutamatergic NMDA/NO pathway in the vMPFC can facilitate baroreflex bradycardic and tachycardic responses. In addition, cannabinoid receptors in this same area can reduce or increase those cardiac responses, possibly through alteration in glutamate release. This vMPFC network has been associated to cardiovascular responses during stressful situations. Recent results showed an involvement of glutamatergic, nitrergic, and endocannabinoid systems in the blood pressure and heart rate increases in animals after aversive conditioning. Consequently, baroreflex could be modified by the vMPFC neurotransmission during stressful situations, allowing necessary cardiovascular adjustments. Remarkably, some mental, neurological and neurodegenerative disorders can involve damage in the vMPFC, such as posttraumatic stress disorder, major depressive disorder, Alzheimer's disease, and neuropathic pain. These pathologies are also associated with alterations in glutamate/NO release and endocannabinoid functions along with baroreflex impairment. Thus, the vMPFC seems to play a crucial role on the baroreflex control, either during pathological or physiological stress-related responses. The study of baroreflex mechanism under such pathological view may be helpful to establish causality mechanisms for the autonomic and cardiovascular imbalance found in those conditions. It can explain in the future the reasons of the high cardiovascular risk some neurological and neurodegenerative disease patients undergo. Additionally, the present work offers insights on the possible contributions of vMPFC dysfunction on baroreflex alterations, which, in turn, may raise questions in what extent other brain areas may play a role in autonomic deregulation under such pathological situations.


Asunto(s)
Trastorno Depresivo Mayor , Enfermedades Neurodegenerativas , Ratas , Animales , Ratas Wistar , Barorreflejo/fisiología , Endocannabinoides/metabolismo , Trastorno Depresivo Mayor/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología , Corteza Prefrontal/metabolismo , Glutamatos/metabolismo
3.
Pflugers Arch ; 473(4): 697-709, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839941

RESUMEN

Ventral medial prefrontal cortex (vMPFC) glutamatergic neurotransmission has a facilitatory role on cardiac baroreflex activity which is mediated by NMDA receptors activation. Corticotrophin releasing factor receptors type1 and 2 (CRF1 and CRF2), present in the vMPFC, are colocalized in neurons containing glutamate vesicles, suggesting that such receptors may be involved in glutamate release in this cortical area. Therefore, our hypothesis is that the CRF1 and CRF2 receptors can modulate the baroreflex bradycardic and tachycardic responses. In order to prove this assumption, male Wistar rats had bilateral stainless steel guide cannula implanted into the vMPFC, and baroreflex was activated by intravenous infusion of phenylephrine or sodium nitroprusside through a vein catheter. A second catheter was implanted into the femoral artery for cardiovascular measurements. The CRF1 receptor antagonist administration in either infralimbic cortex (IL) or prelimbic cortex (PL), vMPFC regions, was unable to change the bradycardic responses but increased the slope of the baroreflex tachycardic activity. Microinjection of the CRF2 receptor antagonist into the IL and PL did not alter ether bradycardic nor tachycardic baroreflex responses. The administration of the non-selective CRF receptors agonist, urocortin in these areas, did not modify bradycardic responses but decreased tachycardia slope of the baroreflex. CRF1 receptor antagonist administration prior to non-selective CRF agonist in vMPFC prevented the tachycardic responses reduction. However, CRF2 receptor antagonism could not prevent the effect of CRF receptors agonist. These results suggest that IL and PL CRF1 but not CRF2 receptors have an inhibitory role on the baroreflex tachycardic activity. Furthermore, they have no influence on baroreflex bradycardic activity.


Asunto(s)
Barorreflejo , Frecuencia Cardíaca , Corteza Prefrontal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Masculino , Corteza Prefrontal/fisiología , Ratas , Ratas Wistar
4.
Pflugers Arch ; 473(2): 253-271, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33140200

RESUMEN

The bed nucleus of the stria terminalis (BNST) is a forebrain structure, involved in the modulation of neuroendocrine, cardiovascular and autonomic responses. One of the responses is baroreflex activity, which consists in a neural mechanism responsible for keeping the blood pressure within a narrow range of variation. It has been reported that blockade of BNST α1-adrenoceptors increased the bradycardic component of baroreflex. In addition, such receptors are able to modulate glutamate release in this structure. Interestingly, BNST NMDA receptor antagonism and neuronal nitric oxide synthase (nNOS) inhibition led to the same effect of the α1-adrenoceptors blockade on baroreflex bradycardic response. Therefore, the hypothesis of the present study is that BNST noradrenergic transmission interacts with NMDA/NO pathway through α1 adrenoceptors to modulate the baroreflex activity. Male Wistar rats had stainless steel guide cannulas bilaterally implanted in the BNST. Subsequently, a catheter was inserted into the femoral artery for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. Injection of the noradrenaline reuptake inhibitor reboxetine in the BNST did not modify the tachycardic, but significantly decreased the bradycardic component of baroreflex. Administration of an α1, but not an α2 antagonist into the BNST prior to reboxetine prevented this effect. Likewise, previous injection of NMDA/NO pathway blockers inhibited the effect of reboxetine on bradycardic response. In conclusion, it was demonstrated for the first time the existence of an interaction between BNST noradrenergic, glutamatergic and nitrergic neurotransmissions in the modulation of bradycardic baroreflex response.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Barorreflejo , Corazón/inervación , Óxido Nítrico/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleos Septales/metabolismo , Animales , Presión Arterial , Sistema Nervioso Autónomo/efectos de los fármacos , Barorreflejo/efectos de los fármacos , Frecuencia Cardíaca , Masculino , Neurotransmisores/farmacología , Ratas Wistar , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Núcleos Septales/efectos de los fármacos , Factores de Tiempo
5.
Brain Res ; 1747: 147037, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32738232

RESUMEN

Insular cortex is a brain structure involved in the modulation of autonomic activity and cardiovascular function. The nitric oxide/cyclic guanosine-3',5'-monophosphate pathway is a prominent signaling mechanism in the central nervous system, controlling behavioral and physiological responses. Nevertheless, despite evidence regarding the presence of nitric oxide-synthesizing neurons in the insular cortex, its role in the control of autonomic and cardiovascular function has never been reported. Thus, the present study aimed to investigate the involvement of nitric oxide/cyclic guanosine-3',5'-monophosphate pathway mediated by neuronal nitric oxide synthase (nNOS) activation within the insular cortex in the modulation of baroreflex responses in unanesthetized rats. For this, we evaluated the effect of bilateral microinjection of either the nitric oxide scavenger carboxy-PTIO, the selective neuronal nitric oxide synthase inhibitor Nω-Propyl-l-arginine or the soluble guanylate cyclase inhibitor ODQ into the insular cortex on the bradycardia evoked by blood pressure increases in response to intravenous infusion of phenylephrine, and the tachycardia caused by blood pressure decreases evoked by intravenous infusion of sodium nitroprusside. Bilateral microinjection of either NPLA or carboxy-PTIO into the insular cortex increased the reflex bradycardic response, whereas the reflex tachycardia was decreased by these treatments. Bilateral microinjection of the soluble guanylate cyclase inhibitor into the insular cortex did not affect any parameter of baroreflex function evaluated. Overall, our findings provide evidence that insular cortex nitrergic signaling, acting via neuronal nitric oxide synthase, plays a prominent role in control of baroreflex function. However, control of reflex responses seems to be independent of soluble guanylate cyclase activation.


Asunto(s)
Barorreflejo/fisiología , Corteza Cerebral/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Animales , Barorreflejo/efectos de los fármacos , Benzoatos/farmacología , Presión Sanguínea/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Imidazoles/farmacología , Masculino , Oxadiazoles/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
6.
Neurobiol Learn Mem ; 159: 6-15, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30731235

RESUMEN

Enhancement of synaptic plasticity through changes in neuronal gene expression is a prerequisite for improved cognitive performance. Moreover, several studies have shown that DNA methylation is able to affect the expression of (e.g. plasticity) genes that are important for several cognitive functions. In this study, the effect of the DNA methyltransferase (DNMT) inhibitor RG108 was assessed on object pattern separation (OPS) task in mice. In addition, its effect on the expression of target genes was monitored. Administration of RG108 before the test led to a short-lasting, dose-dependent increase in pattern separation memory that was not present anymore after 48 h. Furthermore, treatment with RG108 did not enhance long-term memory of the animals when tested after a 24 h inter-trial interval in the same task. At the transcriptomic level, acute treatment with RG108 was accompanied by increased expression of Bdnf1, while expression of Bdnf4, Bdnf9, Gria1 and Hdac2 was not altered within 1 h after treatment. Methylation analysis of 14 loci in the promoter region of Bdnf1 revealed a counterintuitive increase in the levels of DNA methylation at three CpG sites. Taken together, these results indicate that acute administration of RG108 has a short-lasting pro-cognitive effect on object pattern separation that could be explained by increased Bdnf1 expression. The observed increase in Bdnf1 methylation suggests a complex interplay between Bdnf methylation-demethylation that promotes Bdnf1 expression and associated cognitive performance. Considering that impaired pattern separation could constitute the underlying problem of a wide range of mental and cognitive disorders, pharmacological agents including DNA methylation inhibitors that improve pattern separation could be compelling targets for the treatment of these disorders. In that respect, future studies are needed in order to determine the effect of chronic administration of such agents.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ftalimidas/farmacología , Percepción Espacial/efectos de los fármacos , Triptófano/análogos & derivados , Animales , Conducta Animal/efectos de los fármacos , Islas de CpG/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ratones , Virus Diminuto del Ratón , Regiones Promotoras Genéticas/efectos de los fármacos , Triptófano/farmacología
7.
Pflugers Arch ; 470(10): 1521-1542, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29845313

RESUMEN

The ventral medial prefrontal cortex (vMPFC) facilitates the cardiac baroreflex response through N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) formation by neuronal NO synthase (nNOS) and soluble guanylate cyclase (sGC) triggering. Glutamatergic transmission is modulated by the cannabinoid receptor type 1 (CB1) and transient receptor potential vanilloid type 1 (TRPV1) receptors, which may inhibit or stimulate glutamate release in the brain, respectively. Interestingly, vMPFC CB1 receptors decrease cardiac baroreflex responses, while TRPV1 channels facilitate them. Therefore, the hypothesis of the present study is that the vMPFC NMDA/NO pathway is regulated by both CB1 and TRPV1 receptors in the modulation of cardiac baroreflex activity. In order to test this assumption, we used male Wistar rats that had stainless steel guide cannulae bilaterally implanted in the vMPFC. Subsequently, a catheter was inserted into the femoral artery, for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. The increase in tachycardic and bradycardic responses observed after the microinjection of a CB1 receptors antagonist into the vMPFC was prevented by an NMDA antagonist as well as by the nNOS and sGC inhibition. NO extracellular scavenging also abolished these responses. These same pharmacological manipulations inhibited cardiac reflex enhancement induced by TRPV1 agonist injection into the area. Based on these results, we conclude that vMPFC CB1 and TRPV1 receptors inhibit or facilitate the cardiac baroreflex activity by stimulating or blocking the NMDA activation and NO synthesis.


Asunto(s)
Barorreflejo , Corazón/fisiología , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Guanilato Ciclasa/antagonistas & inhibidores , Frecuencia Cardíaca , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Canales Catiónicos TRPV/agonistas
8.
Eur J Neurosci ; 44(11): 2877-2884, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27646556

RESUMEN

Baroreflex activity is a neural mechanism responsible for short-term adjustments in blood pressure (BP). Several supramedullary areas, which send projections to the medulla, are able to control this reflex. In this context, the ventrolateral part of the periaqueductal grey matter (vlPAG), which is a mesencephalic structure, has been suggested to regulate the cardiovascular system. However, its involvement in baroreflex control has never been addressed. Therefore, our hypothesis is that the vlPAG neurotransmission is involved in baroreflex cardiac activity. Male Wistar rats had stainless steel guide cannulae unilaterally or bilaterally implanted in the vlPAG. Afterward, a catheter was inserted into the femoral artery for BP and HR recording. A second catheter was implanted into the femoral vein for baroreflex activation. When the nonselective synaptic blocker cobalt chloride (CoCl2 ) was unilaterally injected into the vlPAG, in either the left or the right hemisphere, it increased the tachycardic response to baroreflex activation. However, when CoCl2 was bilaterally microinjected into the vlPAG it decreased the tachycardic response to baroreflex stimulation. This work shows that vlPAG neurotransmission is involved in modulation of the tachycardic response of the baroreflex. Moreover, we suggest that the interconnections between the vlPAG of both hemispheres are activated during baroreflex stimulation. In this way, our work helps to improve the understanding about brain-heart circuitry control, emphasizing the role of the autonomic nervous system in such modulation.


Asunto(s)
Barorreflejo , Corazón/fisiología , Sustancia Gris Periacueductal/fisiología , Transmisión Sináptica , Animales , Presión Sanguínea , Corazón/inervación , Frecuencia Cardíaca , Masculino , Ratas , Ratas Wistar
9.
Biomed Pharmacother ; 65(4): 313-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21704476

RESUMEN

The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of ß-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antimaláricos/uso terapéutico , Compuestos Organoplatinos/uso terapéutico , Aminoquinolinas/efectos adversos , Aminoquinolinas/química , Animales , Antimaláricos/efectos adversos , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Macrófagos Peritoneales/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratones , Estructura Molecular , Compuestos Organoplatinos/efectos adversos , Compuestos Organoplatinos/química , Plasmodium berghei/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA