Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39120393

RESUMEN

Currently, the biomimetic approach of drawing inspiration from nature has frequently been employed in designing drug nanocarriers (NCs) of actively target various diseases, ranging from cancer to neuronal and inflammation pathologies. The cell-membrane coating can confer upon the inner nanomaterials a biological identity and the functions exhibited by the cells from which the membrane is derived. Monocyte- and macrophage-membrane-coated nanomaterials have emerged as an ideal delivery system to target inflamed vasculature. Herein, we developed two biomimetic NCs using a human-derived leukaemia monocytic cell line (THP-1), either undifferentiated or differentiated by phorbol 12-myristate 13-acetate (PMA) into adherent macrophage-like cells as membrane sources for NC coating. We employed a secondary oil-in-water nano-emulsion (SNE) as the inner core, which served as an optimal NC for high payloads of lipophilic compounds. Two different biomimetic systems were produced, combining the biomimetic features of biological membranes with the physicochemical and nano-sized characteristics of SNEs. These systems were named Monocyte NEsoSome (M-NEsoSome) and Macrophage NEsoSome (M0-NEsoSome). Their uptake ability was investigated in tumour necrosis factor alfa (TNFα)-treated human umbilical vein endothelial cells (HUVECs), selected as a model of inflamed endothelial cells. The M0 membrane coating demonstrated accelerated internalisation compared with the monocyte coating and notably surpassed the uptake rate of bare NCs. In conclusion, M0-NEsoSome NCs could be a therapeutic system for targeting inflamed endothelial cells and potentially delivering anti-inflammatory drugs in vascular inflammation.

2.
Pharmaceutics ; 16(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39204355

RESUMEN

New strategies for enhancing drug delivery to the blood-brain barrier (BBB) represent a major challenge in treating cerebral diseases. Nanoemulsion-based nanocarriers represent an ideal candidate to improve drug delivery thanks to their versatility in functionalization and cargo protection. In this work, a paclitaxel-loaded nano-emulsion has been firstly functionalized and stabilized with two layers constituted of chitosan and hyaluronic acid, and, secondly, the latter has been conjugated to the CRT peptide. CRT is a bioactive peptide that selectively recognizes bEnd.3 cells, a model of the BBB, thanks to its interactions with transferrin (Tf) and its receptor (TfR). Cytotoxic results showed a 41.5% higher uptake of CRT functionalized nano-emulsion than the negative control, demonstrating the ability of this novel tool to be accumulated in brain endothelium tissue. Based upon these results, our approach can be fully generalizable to the design of multifunctional nanocarriers for delivery of therapeutic agents to the central nervous systems.

3.
Int J Nanomedicine ; 19: 7237-7251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050870

RESUMEN

Introduction: SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility. Methods: We report investigations concerning a PEGylated variant of KIRCONG mimetic, named KIRCONG chim, bearing a PEG (Polyethylene glycol) moiety as a linker of noncontiguous SOCS3 regions. Its ability to bind to the catalytic domain of JAK2 was evaluated through MST (MicroScale Thermophoresis), as well as its stability in biological serum assays. The structural features of the cyclic compounds were investigated by CD (circular dichroism), nuclear magnetic resonance (NMR), and molecular dynamic (MD) studies. To evaluate the cellular effects, we employed a PLGA-nanoparticle as a delivery system after characterization using DLS and SEM techniques. Results: KIRCONG chim PEG-revealed selective penetration into triple-negative breast cancer (TNBC) MDA-MB-231 cells with respect to the human breast epithelial cell line (MCF10A), acting as a potent inhibitor of STAT3 phosphorylation. Discussion: Overall, the data indicated that miniaturization of the SOCS3 protein is a promising therapeutic approach for aberrant dysregulation of JAK/STAT during cancer progression.


Asunto(s)
Janus Quinasa 2 , Polietilenglicoles , Proteína 3 Supresora de la Señalización de Citocinas , Neoplasias de la Mama Triple Negativas , Humanos , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Polietilenglicoles/química , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Janus Quinasa 2/metabolismo , Transducción de Señal/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Factor de Transcripción STAT3/metabolismo , Nanopartículas/química , Femenino
4.
Sci Rep ; 14(1): 11613, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773229

RESUMEN

Natural polymers have found increased use in a wider range of applications due to their less harmful effects. Notably, bacterial cellulose has gained significant consideration due to its exceptional physical and chemical properties and its substantial biocompatibility, which makes it an attractive candidate for several biomedical applications. This study attempts to thoroughly unravel the microstructure of bacterial cellulose precursors, known as bioflocculants, which to date have been poorly characterised, by employing both electron and optical microscopy techniques. Here, starting from bioflocculants from Symbiotic Culture of Bacteria and Yeast (SCOBY), we proved that their microstructural features, such as porosity percentage, cellulose assembly degree, fibres' density and fraction, change in a spatio-temporal manner during their rising toward the liquid-air interface. Furthermore, our research identified a correlation between electron and optical microscopy parameters, enabling the assessment of bioflocculants' microstructure without necessitating offline sample preparation procedures. The ultimate goal was to determine their potential suitability as a novel cellulose-based building block material with tuneable structural properties. Our investigations substantiate the capability of SCOBY bioflocculants, characterized by distinct microstructures, to successfully assemble within a microfluidic device, thereby generating a cellulose sheet endowed with specific and purposefully designed structural features.


Asunto(s)
Celulosa , Celulosa/química , Bacterias/metabolismo , Porosidad
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982752

RESUMEN

Current 3D cancer models (in vitro) fail to reproduce complex cancer cell extracellular matrices (ECMs) and the interrelationships occurring (in vivo) in the tumor microenvironment (TME). Herein, we propose 3D in vitro colorectal cancer microtissues (3D CRC µTs), which reproduce the TME more faithfully in vitro. Normal human fibroblasts were seeded onto porous biodegradable gelatin microbeads (GPMs) and were continuously induced to synthesize and assemble their own ECMs (3D Stroma µTs) in a spinner flask bioreactor. Then, human colon cancer cells were dynamically seeded onto the 3D Stroma µTs to achieve the 3D CRC µTs. Morphological characterization of the 3D CRC µTs was performed to assess the presence of different complex macromolecular components that feature in vivo in the ECM. The results showed the 3D CRC µTs recapitulated the TME in terms of ECM remodeling, cell growth, and the activation of normal fibroblasts toward an activated phenotype. Then, the microtissues were assessed as a drug screening platform by evaluating the effect of 5-Fluorouracil (5-FU), curcumin-loaded nanoemulsions (CT-NE-Curc), and the combination of the two. When taken together, the results showed that our microtissues are promising in that they can help clarify complex cancer-ECM interactions and evaluate the efficacy of therapies. Moreover, they may be combined with tissue-on-chip technologies aimed at addressing further studies in cancer progression and drug discovery.


Asunto(s)
Neoplasias del Colon , Matriz Extracelular , Humanos , Sistemas de Liberación de Medicamentos , Fluorouracilo/farmacología , Microambiente Tumoral
6.
Biochim Biophys Acta Gen Subj ; 1866(8): 130173, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35597503

RESUMEN

BACKGROUND: Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE: Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS: Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE: The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Amiloidogénicas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética , Nucleofosmina/genética , Nucleofosmina/metabolismo
7.
Pharmaceutics ; 14(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456704

RESUMEN

The study of novel drug delivery systems represents one of the frontiers of the biomedical research area. Multi-disciplinary scientific approaches combining traditional or engineered technologies are used to provide major advances in improving drug bioavailability, rate of release, cell/tissue specificity and therapeutic index. Biodegradable and bio-absorbable polymers are usually the building blocks of these systems, and their copolymers are employed to create delivery components. For example, poly (lactic acid) or poly (glycolic acid) are often used as bricks for the production drug-based delivery systems as polymeric microparticles (MPs) or micron-scale needles. To avoid time-consuming empirical approaches for the optimization of these formulations, in silico-supported models have been developed. These methods can predict and tune the release of different drugs starting from designed combinations. Starting from these considerations, this review has the aim of investigating recent approaches to the production of polymeric carriers and the combination of in silico and experimental methods as promising platforms in the biomedical field.

8.
Front Bioeng Biotechnol ; 10: 851893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356776

RESUMEN

Bacterial cellulose (BC) is a highly pure form of cellulose produced by bacteria, which possesses numerous advantages such as good mechanical properties, high chemical flexibility, and the ability to assemble in nanostructures. Thanks to these features, it achieved a key role in the biomedical field and in drug delivery applications. BC showed its ability to modulate the release of several drugs and biomolecules to the skin, thus improving their clinical outcomes. This work displays the loading of a 3D BC nanonetwork with an innovative drug delivery nanoemulsion system. BC was optimized by static culture of SCOBY (symbiotic colony of bacteria and yeast) and characterized by morphological and ultrastructural analyses, which indicate a cellulose fiber diameter range of 30-50 nm. BC layers were then incubated at different time points with a nanocarrier based on a secondary nanoemulsion (SNE) previously loaded with a well-known antioxidant and anti-inflammatory agent, namely, coenzyme-Q10 (Co-Q10). Incubation of Co-Q10-SNE in the BC nanonetwork and its release were analyzed by fluorescence spectroscopy.

9.
Inorg Chem ; 61(8): 3540-3552, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35171608

RESUMEN

Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aß21-40 and Aß25-35, of the C-terminal region of the ß-amyloid (Aß) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.


Asunto(s)
Péptidos beta-Amiloides
10.
Pharmaceutics ; 13(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34371760

RESUMEN

Recently, we developed ultra-stable oil in water nano-emulsions (O/W NEs), able to carry both internal and external cargos (Somes), such as lipophilic compounds and hydrophilic coatings, respectively, that we call here NEsoSomes. O/W NEs are an excellent bioengineering tool for drug and molecules delivery, due to their ability to dissolve a large number of hydrophobic compounds and protect them from hydrolysis and degradation under biological conditions. At present, no report is available on the combination of cell membrane coatings with such nanocarriers, probably due to their typical instability feature. Since then, we have reported, for the first time, a new cell membrane (CM)-coated nanomaterial composed of membranes extracted from glioblastoma cancer cells (U87-MG) deposited on NEsoSomes, through a liquid-liquid interface method, to produce highly controllable membrane caked nano-capsules, namely CM-NEsoSomes. CM-NEsoSomes were physically characterized by dynamic light scattering (DLS) over time and their correct morphology was analyzed by confocal and transmission electron microscopy (TEM) microscopy. Moreover, CM-NEsoSomes biocompatibility was tested on the healthy model cell line, performing cell cytotoxicity and uptake assay, showing nanocarriers uptake by cells with no induced cytotoxicity.

11.
Front Bioeng Biotechnol ; 9: 660691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124020

RESUMEN

The intestinal microbiota is a real ecosystem composed of several bacterial species and a very huge amount of strains that through their metabolic activities play a crucial role in the development and performance of the immune system and other functions. Microbiota modulation by probiotics establishes a new era into the pharmaceutical and healthcare market. Probiotics play, in fact, an important role in helping and sustaining human health, but in order to produce benefits, their viability must be preserved throughout the production process up to consumption, and in addition, their bioactivity required to be safeguarded while passing through the gastrointestinal tract. In this frame, encouraging results come from encapsulation strategies that have proven to be very promising in protecting bacteria and their viability. However, specific effort has to be dedicated to the design optimization of the encapsulation process and, in particular, to the processing parameters that affect capsules microstructure. Herein, focusing on calcium alginate microspheres, after a preliminary selection of their processing conditions based on size distribution, we implemented a micro-rheological analysis, by using the multiple-particle tracking technique, to correlate the inner microstructure to the selected process conditions and to the viability of the Lactobacillus paracasei CBA L74. It was assessed that the explored levels of cross-linking, although changing the microorganism constriction, did not affect its viability. The obtained results confirm how this technology is a promising and a valid strategy to protect the microorganism viability and ensure its stability during the production process.

12.
J Mater Chem B ; 9(2): 392-403, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283828

RESUMEN

Proteins are widely explored as therapeutic agents, but some issues remain alive in their delivery versus target tissues and organs. Especially in the case of water-labile proteins, they undergo rapid failure if not properly stored or once they have encountered the biological environment. In this framework, delivery systems can be very useful to protect such proteins both during storage and during their administration. In particular, polymer microneedles (MNs) represent an interesting tool for the in vivo administration of proteins, avoiding the aggressive gastrointestinal or blood environment. Here, polymer microneedles for the encapsulation and delivery of the labile protein collagenase are presented. Polyvinylpyrrolidone-hyaluronic acid (PVP-HA) microneedles with embedded poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) were designed in order to achieve a sustained but relatively fast release of the enzyme to avoid its long exposure to water upon administration. PLGA-MPs with tunable porosity were produced by means of a modified double emulsion protocol and their morphological and kinetic properties were characterized by different analytic techniques. Diffusion studies and in vivo experiments were used to assess the release and indentation ability of the proposed MP-based microneedles. The obtained results recommend our bi-compartmental system as a promising biomedical technique paving the way for its efficient use in treating human diseases with labile therapeutic agents.


Asunto(s)
Colagenasas/metabolismo , Microinyecciones/métodos , Piel/metabolismo , Humanos
13.
Prog Biomater ; 9(4): 153-174, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33058072

RESUMEN

Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.

14.
Int J Nanomedicine ; 15: 4859-4876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764923

RESUMEN

INTRODUCTION: CoenzymeQ10 (CoQ10) is a well-known antioxidant and anti-inflammatory agent with cardioprotective properties. However, clinical trials based on its oral administration have failed to provide significant effect on cardiac functionality. The main limitation of CoQ10 is based on its very low oral bioavailability and instability that limit dramatically its effects as a cardioprotective agent. Herein, we loaded CoQ10 in high bioavailable nano-emulsions (NEs) coated with chitosan or chitosan and hyaluronic acid in order to improve its performance. METHODS: We tested cardioprotective and hepatoprotective effects of CoQ10-loaded nano-carriers against Doxorubicin and Trastuzumab toxicities in cardiomyocytes and liver cells through analysis of cell viability, lipid peroxidation, expression of leukotrienes, p65/NF-kB and pro-inflammatory cytokines involved in anticancer-induced cardio and hepatotoxicity. RESULTS: Nano-carriers showed high stability and loading ability and increased cell viability both in hepatocytes and cardiomyocytes during anticancer treatments. We observed that these effects are mediated by the inhibition of lipid peroxidation and reduction of the inflammation. CoQ10-loaded nano-emulsions showed also strong anti-inflammatory effects reducing leukotriene B4 and p65/NF-κB expression and Interleukin 1ß and 6 production during anticancer treatments. DISCUSSION: Anthracyclines and Human epidermal growth factor receptor (HER2) inhibitors have shown significant anticancer effects in clinical practice but their use is characterized by cardiotoxicity and hepatotoxicity. Nano-carriers loaded with CoQ10 showed cardio and hepatoprotective properties mediated by reduction of oxidative damages and pro-inflammatory mediators. These results set the stage for preclinical studies of cardio and hepatoprotection in HER2+ breast cancer-bearing mice treated with Doxorubicin and Trastuzumab.


Asunto(s)
Antraciclinas/efectos adversos , Hígado/citología , Miocitos Cardíacos/efectos de los fármacos , Nanoestructuras/química , Trastuzumab/efectos adversos , Ubiquinona/análogos & derivados , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Cápsulas , Cardiotónicos/química , Cardiotónicos/farmacología , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Femenino , Hepatocitos/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ubiquinona/química , Ubiquinona/farmacología
15.
Materials (Basel) ; 13(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290458

RESUMEN

In recent years, drug delivery systems have become some of the main topics within the biomedical field. In this scenario, polymeric microparticles (MPs) are often used as carriers to improve drug stability and drug pharmacokinetics in agreement with this kind of treatment. To avoid a mere and time-consuming empirical approach for the optimization of the pharmacokinetics of an MP-based formulation, here, we propose a simple predictive in silico-supported approach. As an example, in this study, we report the ability to predict and tune the release of curcumin (CUR), used as a model drug, from a designed combination of different poly(d,l-lactide-co-glycolide) (PLGA) MPs kinds. In detail, all CUR-PLGA MPs were synthesized by double emulsion technique and their chemical-physical properties were characterized by Mastersizer and scanning electron microscopy (SEM). Moreover, for all the MPs, CUR encapsulation efficiency and kinetic release were investigated through the UV-vis spectroscopy. This approach, based on the combination of in silico and experimental methods, could be a promising platform in several biomedical applications such as vaccinations, cancer-treatment, diabetes therapy and so on.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...