RESUMEN
Quantum entanglement is essential in performing many quantum information tasks. Here, we theoretically investigate the stationary entanglement between a Laguerre-Gaussian (LG) cavity field and a rotating end mirror in an LG-cavity optorotational system with a nonlinear cross-Kerr (CK) interaction and a degenerate optical parametric amplifier (OPA). We calculate the logarithmic negativity of the system to quantify the stationary entanglement. We examine the influence of various system parameters such as the cavity detuning, the strength of the nonlinear CK interaction, the parametric gain and phase of the OPA, the power of the input Gaussian laser, the topological charge of the LG-cavity field, the mass of the rotating end mirror, and the ambient temperature on the stationary entanglement. Under the combined effect of the nonlinear CK interaction and the OPA, we find that the stationary entanglement can be substantially enhanced at lower Gaussian laser powers, smaller topological charges of the LG-cavity field, and larger masses of the rotating end mirror. We show that the combination of the nonlinear CK interaction and the OPA can make the stationary entanglement more robust against the ambient temperature.
RESUMEN
OBJECTIVE: To analyze the important effect of 3D printing personalized lumbar support on lumbar pain and lumbar function in patients with lumbar disc herniation. METHODS: From October 2018 to May 2021, 60 patients initially diagnosed with lumbar disc herniation were selected and divided into an observation group and a control group, with 30 patients in each group. Among them, there were 18 males and 12 females in the observation group;the age ranged from 24 to 56 years old, with an average of (45.23±6.07) years old. The course of disease ranged from 1 to 24 months, with an average of(6.25±0.82) months, and rehabilitation treatment was carried out by wearing 3D printed personalized lumbar support. There were 19 males and 11 females in the control group;the age ranged from 25 to 57 years old, with an average of (42.78±7.58) years old. The course of disease ranged from 1 to 24 months, with an average of (6.72±1.36) months, and rehabilitation treatment is carried out by wearing traditional lumbar protective equipment. The Japanese Orthopaedic Association (JOA) scores, lumbar Oswestry dysfunction index (ODI) and visual analogue scale (VAS) were evaluated and compared between the two groups before and 1 course after treatment (3 weeks). RESULTS: There was no statistically significant difference in JOA, ODI, and VAS between two groups before treatment (P>0.05). After one course of treatment (3 weeks), JOA scores of both groups was increased compared to before treatment (P<0.05), while ODI and VAS decreased compared to before treatment (P<0.05). After treatment, JOA score of observation group was higher than that of control group (P<0.05), while ODI and VAS scores were lower than those of control group. No adverse events occurred in both groups. CONCLUSION: The application of 3D printing personalized lumbar support can effectively alleviate the pain of patients with lumbar disc herniation and improve their lumbar function of patients.
Asunto(s)
Desplazamiento del Disco Intervertebral , Dolor de la Región Lumbar , Ortopedia , Femenino , Masculino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Desplazamiento del Disco Intervertebral/cirugía , Impresión Tridimensional , TecnologíaRESUMEN
BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural disorder of the spine in adolescents, often associated with structural deformities in both coronal and axial positions. Apical vertex rotation (AVR) is one of the main indicators of axial deformity in patients with scoliosis. Currently, there are few studies on the impact of AVR in the treatment of AIS. OBJECTIVE: This study examined the influence of different AVR on AIS after brace treatment. METHODS: Data were collected from 106 AIS participants aged 11-16 years from the orthopedic outpatient clinic of the Second Hospital of Lanzhou University. Two orthopaedic professionals measured the Cobb angle, AVR and spinal mid-line offset before and after brace treatment, and descriptive and linear correlation analyses were used to determine the correlation between AVR and AIS measured parameters. RESULTS: (1) In AIS volunteers with the same AVR, the treatment effect of AIS with lumbar predominant curvature was higher than that of AIS with thoracic predominant curvature. The treatment effect tended to decrease with increasing AVR. (2) Spinal mid-line deviation was associated with AVR. For patients with AIS with I and II degrees of AVR, the treatment effect of spinal mid-line offset after bracing is better. For AIS patients with AVR III degrees and above, the degree of correction of spinal mid-line offset decreases with the continuous correction of Cobb angle. CONCLUSIONS: The efficacy of AIS was found to be related to the severity of AVR. The efficacy of AIS with predominantly lumbar curvature was significantly higher than that of AIS with predominantly thoracic curvature. The efficacy of treatment of mid-line spinal deviation also decreased with increasing AVR.