Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 425: 110868, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39154568

RESUMEN

The Hazard Analysis and Critical Control Point (HACCP) system plays a crucial role in ensuring food safety within food service establishments, effectively reducing the risk of foodborne diseases. This study focused on assessing the risk of microbe contamination in poultry-based cook-served food during meal preparation in four restaurants and five selected HACCP-certified hotels in eastern China. We examined samples collected from 26 poultry-based cooked dishes, 248 food contact surfaces, 252 non-food contact surfaces, and 121 hand swabs. Our findings indicated a favorable trend of compliance with Chinese national standards, as Escherichia coli and Campylobacter were not detected in any cooked food samples. However, the microbiological assessments revealed non-compliance with total plate count standards in 7 % of the cooked samples from restaurants. In contrast, both dine-in hotels and restaurants exhibited significant non-compliance with guidance concerning food and non-food contact surfaces. Furthermore, our study found that chefs' hand hygiene did not meet microbiological reference standards, even after washing. Notably, Campylobacter persisted at 27 % and 30 % on chefs' hands, posing a significant risk of cross-contamination and foodborne diseases. These findings emphasize the urgent necessity for enhanced supervision of hygiene procedures and process monitoring in the HACCP-certified establishments engaged in the preparation and serving of food. Targeted interventions and food safety education for different chef subgroups can enhance food handling practices and reduce the risk of foodborne diseases in independent food establishments.

2.
Foods ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37685178

RESUMEN

Cutting boards can serve as potential carriers for the cross-contamination of pathogens from chicken to other surfaces. This study aimed to assess chefs' handling practices of cutting boards across five provinces in China and identify the key factors contributing to unsafe cutting board usage, including cleaning methods and handling practices. Handling practices associated with cutting boards were examined through a web-based survey (N = 154), while kitchen environment tests were conducted to investigate the splashing or survival of Campylobacter, inoculated in chicken or on cutting boards, to mimic the practices of chefs. Among chefs in the five provinces of China, wood and plastic cutting boards were the most commonly used for preparing chicken meat. Approximately 33.7% of chefs washed boards with running tap water, 31.17% of chefs washed boards with detergent, and 24.03% of chefs cleaned boards by scraping them with a knife after preparing other meats or chicken. The study tested 23 cutting boards from commercial kitchens for Campylobacter presence before and after chicken preparation and cleaning. Among these, 17 were cleaned with a knife, 5 with running tap water, and only 1 with disinfectant. Results showed that cleaning with a knife significantly reduced Campylobacter presence on cutting boards (p < 0.05), while the three main cleaning methods were inadequate in eliminating contamination to a safe level. In kitchen environment tests, contaminated chicken was chopped on cutting boards, with a maximum distance of 60 cm for low contamination, and 120 cm for medium and high contamination levels. This suggested a contamination risk exposure area ranging from 60 cm to 120 cm. Campylobacter survival on surfaces of wood, plastic, and stainless steel was also tested, with plastic surfaces showing the longest survival time (4.5 h at 15 °C and 3.5 h at 25 °C) In comparison, survival time on stainless steel or wood surfaces was only 3 h, implying a cross-contamination risk exposure period of 3 to 4.5 h after chicken preparation. In conclusion, based on the current study data, the practices employed by chefs play an important role in Campylobacter transfer in the kitchen environment. The presence of Campylobacter on cutting boards even after wiping or droplet splashing highlights its potential as a source of cross-contamination in the kitchen environment. So, chefs in China should reinforce their hygiene culture and adopt effective cutting board cleaning practices to prevent pathogen contamination.

3.
Microorganisms ; 9(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071496

RESUMEN

Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of chicken meat is considered the main route for human infection with Campylobacter. This study aimed to determine the critical factors for Campylobacter cross-contamination in Chinese commercial kitchens during chicken handling. Five commercial kitchens were visited to detect Campylobacter occurrence from 2019 to 2020. Chicken samples (n = 363) and cotton balls from the kitchen surfaces (n = 479) were collected, and total bacterial counts and Campylobacter spp. were detected. Genotypic characterization of 57 Campylobacter jejuni isolates was performed by multilocus sequence typing (MLST). In total, 77.41% of chicken carcass samples and 37.37% of kitchen surfaces showed Campylobacter spp. contamination. Before chicken preparation, Campylobacter spp. were already present in the kitchen environment; however, chicken handling significantly increased Campylobacter spp. prevalence (p < 0.05). After cleaning, boards, hands, and knives still showed high bacterial loads including Campylobacter spp., which related to poor sanitary conditions and ineffective handling practices. Poor sanitation conditions on kitchen surfaces offer greater opportunities for Campylobacter transmission. Molecular typing by MLST revealed that Campylobacter cross-contamination occurred during chicken preparation. The most prevalent sequence types, ST693 and ST45, showed strong biofilm formation ability. Consequently, sanitary condition of surfaces and biofilm formation ability of isolates were the critical points contributing to spread of Campylobacter in kitchen environment. These results provide insight into potential targeted control strategies along the farm-to-plate chain and highlight the necessity for improvements in sanitary conditions. The implementation of more effective cleaning measures should be considered to decrease the campylobacteriosis risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...