Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(34): 4581-4584, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38576349

RESUMEN

A study of an integrated OPECT biosensor gate and the EC color-changing region on the same chip was carried out, achieving sensitive detection through bioetching-induced signal changes. Enzymatic bioetching enables specific alkaline phosphatase (ALP) detection by catalyzing the production of CdS, which modulates the channel current and generates a visual signal.


Asunto(s)
Fosfatasa Alcalina , Técnicas Biosensibles , Técnicas Electroquímicas , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/análisis , Transistores Electrónicos , Compuestos de Cadmio/química , Sulfuros/química , Procesos Fotoquímicos
2.
Chem Commun (Camb) ; 60(21): 2934-2937, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38372635

RESUMEN

The synergistic effect between surface metal vacancies and a Schottky junction on enhanced transconductance, and the gating effect of an organic photoelectrochemical transistor was reported.

3.
Anal Chem ; 95(40): 15049-15056, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37755312

RESUMEN

The polarity of the photocurrent can be modulated by tunable bipolar photoelectrochemical (PEC) behavior, which is anticipated to address the issues of high background signal caused by traditional unidirectional increasing/decreasing response and false-positive/false-negative problems. Here, a new approach is suggested for the first time, which employs a target-induced enzyme-catalyzed reaction and in situ oxygen vacancy (OV) generation to achieve heterojunction photocurrent switching for highly sensitive detection of alkaline phosphatase (ALP). Among them, the ALP can catalyze the decomposition of ascorbic acid phosphate to produce ascorbic acid, which not only acts as an electron donor to change the redox environment but also acts as a reducing agent to introduce OVs into BiOBr semiconductors in cooperation with illumination. The introduction of vacancies can effectively modulate the energy band structure of BiOBr, while with the change of redox conditions, the transfer path of photogenerated carriers is changed, thus realizing the switching of photocurrents, which leads to its use in the construction of a negative-background anti-interference PEC sensing platform, achieving a wide linear range from 0.005 to 500 U·L-1 with a low detection limit of 0.0017 U·L-1. In conclusion, the photocurrent switching operation of this system is jointly regulated by chemistry, optics, and carrier motion, which provides a new idea for the construction of a PEC sensing platform based on photocurrent polarity switching.

4.
Food Chem ; 423: 136285, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156141

RESUMEN

Detection of T-2 toxin is of great significance to environment and human health, as T-2 toxin is one of the main toxins that contaminate crops, stored grain and other food. Herein, a zero-gate-bias organic photoelectrochemical transistor (OPECT) sensor was proposed based on nanoelectrode arrays as gate photoactive materials which can result in the accumulation of photovoltage and preferable capacitance leading to better sensitivity of the OPECT. For comparison, the channel current of OPECT was 100 times higher than photocurrent of conventional photoelectrochemical (PEC) attributing to remarkable signal amplification of OPECT. It was also found that the detection limit of OPECT aptasensor was as low as 28.8 pg/L, lower than 0.34 ng/L of the conventional PEC method, further indicating the advantage of the OPECT devices in T-2 toxin determination. This research has been successfully applied in real sample detection which provided a general platform of OPECT for food safety analysis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanotubos , Toxina T-2 , Humanos , Animales , Leche , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Límite de Detección
5.
Chem Commun (Camb) ; 59(1): 75-78, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36468236

RESUMEN

A novel strong solvent coordination leaching method was developed to prepare surface zinc vacancies in ZnO nanorod arrays. Remarkably, the surface-zinc-vacancy-rich ZnO nanorod arrays exhibit high electron-hole separation efficiency and excellent photoelectrochemical performance for use as a promising candidate for the next generation of organic photoelectrochemical transistor aptasensors.


Asunto(s)
Nanotubos , Óxido de Zinc , Zinc , Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...