Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Fungi (Basel) ; 8(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35330235

RESUMEN

We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of ß-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.

2.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650570

RESUMEN

The short isoform of human TIAM2 has been shown to promote proliferation and invasion in various cancer cells. However, the roles of TIAM2S in immune cells in relation to tumor development have not been investigated. To characterize the effects of TIAM2S, we generated TIAM2S-overexpressing mouse lines and found that aged TIAM2S-transgenic (TIAM2S-TG) developed significantly higher occurrence of lymphocytic infiltration and tumorigenesis in various organs, including colon. In addition, TIAM2S-TG is more sensitized to AOM-induced colon tumor development, suggesting a priming effect toward tumorigenesis. In the light of our recent findings that TIAM2S functions as a novel regulator of cellular serotonin level, we found that serotonin, in addition to Cox2, is a unique inflammation marker presented in the colonic lesion sites in the aged TG animals. Furthermore, our results demonstrated that ectopic TIAM2S altered immunity via the expansion of T lymphocytes; this was especially pronounced in CD8+ T cells in combination with CXCL13/BCA-1 pro-inflammatory chemokine in the serum of TIAM2S-TG mice. Consequently, T lymphocytes and B cells were recruited to the lesion sites and stimulated IL-23/IL17A expression to form the tertiary lymphoid organs. Collectively, our research suggests that TIAM2S provokes a pro-inflammatory immune microenvironment permissive to colorectal tumorigenesis through the serotonin-induced immunomodulatory effects.

3.
Sci Rep ; 10(1): 2936, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076074

RESUMEN

To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1-159) and C-terminus (amino acids 160-237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.


Asunto(s)
Bioensayo/métodos , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Mapeo de Interacción de Proteínas , Tetraciclina/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Doxiciclina/farmacología , Fluorescencia , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Higromicina B/farmacología , Proteínas Luminiscentes/metabolismo , Unión Proteica/efectos de los fármacos , Septinas/metabolismo
4.
Sci Rep ; 6: 33716, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27644158

RESUMEN

Candida albicans is an opportunistic human fungal pathogen. The ability to switch among multiple cellular forms is key to its pathogenesis. The Dbf4-dependent protein kinase gene CDC7 is conserved due to its role in initiating DNA replication. Because a C. albicans Cdc7 (Cacdc7) homozygous null was not viable, we generated a C. albicans strain with a deleted C. albicans CDC7 (CaCDC7) allele and an expression-repressible allele. Surprisingly, cells of the strain grew as hyphae under the repressed conditions. The in vitro kinase assays confirmed that CaCdc7 (K232) and CaCdc7 (T437) are critical for catalytic and phosphoacceptor of activation activity, respectively. C. albicans cells formed hyphae when expressing either the catalytically inactive CaCdc7 (K232R) or the phosphoacceptor-deficient CaCdc7 (T437A). While CaCdc7 interacted with CaDbf4, cells of the strain in which CaCDC7 was repressed were not rescued by constitutively expressing C. albicans DBF4 or vice versa. We conclude that CaDBF4-dependent CaCDC7 is an essential gene suppressing the hyphal development.


Asunto(s)
Candida albicans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Candida albicans/genética , Proteínas de Ciclo Celular/genética , ADN de Hongos/genética , Proteínas Fúngicas/genética , Hifa/genética
5.
Curr Genet ; 62(1): 213-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26497136

RESUMEN

Candida albicans is an important human fungal pathogen but its study has been hampered for being a natural diploid that lacks a complete sexual cycle. Gene knock-out and essential gene repression are used to study gene function in C. albicans. To effectively study essential genes in wild-type C. albicans, we took advantage of the compatible effects of the antibiotics hygromycin B and nourseothricin, the recyclable CaSAT1-flipper and the tetracycline-repressible (Tet-off) system. To allow deleting two alleles simultaneously, we created a cassette with a C. albicans HygB resistance gene (CaHygB) flanked with the FLP recombinase target sites that can be operated alongside the CaSAT1-flipper. Additionally, to enable conditionally switching off essential genes, we created a CaHygB-based Tet-off cassette that consisted of the CaTDH3 promoter, which is used for the constitutive expression of the tetracycline-regulated transactivator and a tetracycline response operator. To validate the new systems, all strains were constructed based on the wild-type strain and selected by the two dominant selectable markers, CaHygB and CaSAT1. The C. albicans general transcriptional activator CaGCN4 and its negative regulator CaPCL5 genes were targeted for gene deletion, and the essential cyclin-dependent kinase CaPHO85 gene was placed under the Tet-off system. Cagcn4, Capcl5, the conditional Tet-off CaPHO85 mutants, and mutants bearing two out of the three mutations were generated. By subjecting the mutants to various stress conditions, the functional relationship of the genes was revealed. This new system can efficiently delete genes and conditionally switch off essential genes in wild-type C. albicans to assess functional interaction between genes.


Asunto(s)
Candida albicans/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Selección Genética , Activación Transcripcional , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Orden Génico , Genes Fúngicos , Vectores Genéticos , Mutación , Fenotipo , Regiones Promotoras Genéticas , Tetraciclina/farmacología
6.
Can J Microbiol ; 61(4): 247-55, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25719926

RESUMEN

The CDC4 gene is nonessential in Candida albicans and plays a role in suppressing filamentous growth, in contrast to its homologues, which are involved in the G1-S transition of the cell cycle. While characterizing the function of C. albicans CDC4 (CaCDC4), we found that the loss of CaCDC4 resulted in a reduction in cell flocculation, indicating a possible role for CaCDC4 in biofilm formation. To elucidate the role of CaCDC4 in biofilm formation, Cacdc4 null mutant strains were constructed by using the mini-Ura-blaster method. To create a CaCDC4 rescued strain, the plasmid p6HF-ACT1p-CaCDC4 capable of constitutively expressing CaCDC4 was introduced into the Cacdc4 homozygous null mutant. To determine the biofilm formation ability, an in vitro XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-5-carboxanilide) reduction assay was used. Compared with the parental auxotrophic strain BWP17, the Cacdc4 homozygous null mutant was able to enhance biofilm formation significantly. This enhancement of biofilm formation in the Cacdc4 homozygous null mutant could be reversed by constitutively expressing CaCDC4. We conclude that CaCDC4 has a role in suppressing biofilm formation in C. albicans.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/enzimología , Candida albicans/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ubiquitina-Proteína Ligasas/metabolismo , Candida albicans/genética , Regulación hacia Abajo , Proteínas Fúngicas/genética , Ubiquitina-Proteína Ligasas/genética
7.
J Biomed Sci ; 20: 97, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24359552

RESUMEN

BACKGROUND: CDC4, which encodes an F-box protein that is a member of the Skp1-Cdc53/Cul1-F-box (SCF) ubiquitin E3 ligase, was initially identified in the budding yeast Saccharomyces cerevisiae as an essential gene for progression through G1-S transition of the cell cycle. Although Candida albicans CDC4 (CaCDC4) can release the mitotic defect caused by the loss of CDC4 in S. cerevisiae, CaCDC4 is nonessential and suppresses filamentation. RESULTS: To further elucidate the function of CaCDC4, a C. albicans strain, with one CaCDC4 allele deleted and the other under the repressible C. albicans MET3 promoter (CaMET3p) control, was made before introducing cassettes capable of doxycycline (Dox)-induced expression of various C. albicans Cdc4 (CaCdc4) domains. Cells from each strain could express a specific CaCdc4 domain under Dox-induced, but CaMET3-CaCDC4 repressed conditions. Cells expressing domains without either the F-box or WD40-repeat exhibited filamentation and flocculation similarly to those lacking CaCDC4 expression, indicating the functional essentiality of the F-box and WD40-repeat. Notably, cells expressing the N-terminal 85-amino acid truncated CaCdc4 partially reverse the filament-to-yeast and weaken the ability to flocculate compared to those expressing the full-length CaCdc4, suggesting that N-terminal 85-amino acid of CaCdc4 regulates both morphogenesis and flocculation. CONCLUSIONS: The F-box and the WD40-repeat of CaCdc4 are essential in inhibiting yeast-to-filament transition and flocculation. The N-terminal region (1-85) of CaCdc4 also has a positive role for its function, lost of which impairs both the ability to flocculate and to reverse filamentous growth in C. albicans.


Asunto(s)
Candida albicans/fisiología , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Southern Blotting , Western Blotting , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Floculación , Proteínas Fúngicas/metabolismo , Morfogénesis , Estructura Terciaria de Proteína
8.
Yeast ; 28(3): 253-63, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21360736

RESUMEN

It has been difficult to develop molecular tools for studying the fungal pathogen Candida albicans because this species uses a non-standard genetic code and is diploid without a complete sexual cycle. Vector systems with regulatable promoters to produce conditional mutants, epitope tags for protein detection and recyclable selection markers are useful for functional study of genes. However, most currently available vectors contain only a subset of desired properties, which limits their application. To combine several useful properties in one vector, the vector pTET25 was initially modified into pTET25M, so that the URA3 gene flanked by dpl200 could be used repetitively. To enable more choices for cloning, a multiple cloning site was introduced at both ends of GFP in pTET25M. GFP expression was induced by doxycycline in a dose- and time-dependent manner when the plasmid was introduced into C. albicans with or without URA3. The applicability of the vectors was verified by constructing strains capable of expressing either the N-terminal GFP fusion of Cdc10 or the C-terminal GFP fusion of Cdc11. Additionally, by replacing the GFP gene of pTET25M with DNA sequence encoding Cdc10 with an epitope tag of six histidine residues at the C-terminus, doxycycline-induced expression of CDC10 was achieved when the expression vector was introduced into C. albicans. This new system allows for inducible expression of a desired C. albicans gene with the advantage of convenience of cloning. It also allows the presence of a recyclable URA3 marker and the detectable expression of fusion or epitope-tagged protein.


Asunto(s)
Candida albicans/genética , Vectores Genéticos , Ingeniería de Proteínas/métodos , Recombinación Genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Doxiciclina/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional/métodos , Plásmidos , Proteínas Recombinantes de Fusión/genética , Análisis de Secuencia de ADN , Activación Transcripcional
9.
Biochem Biophys Res Commun ; 395(1): 152-7, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20361932

RESUMEN

Candida albicans CDC4 is nonessential and plays a role in suppressing filamentous growth, in contrast to its evolutionary counterparts involved in the G1-S transition of the cell cycle. Genetic epistasis analysis has indicated that proteins besides Sol1 are targets of C. albicans Cdc4. Moreover, no formal evidence suggests that C. albicans Cdc4 functions through the ubiquitin E3 ligase of the Skp1-Cul1/Cdc53-F-box complex. To elucidate the role of C. albicans CDC4, C. albicans Cdc4-associated proteins were sought by affinity purification. A 6xHis epitope-tagged C. albicans Cdc4 expressed from Escherichia coli was used in affinity purifications with the cell lysate of C. albicans cdc4 homozygous null mutant. Candida albicans Cdc4 and its associated proteins were resolved by SDS-PAGE and visualized by silver staining. The candidate proteins were recovered and trypsin-digested to generate MALDI-TOF spectra profiles, which were used to search against those of known proteins in the database to reveal their identities. Two out of four proteins encoded by GPH1 and THR1 genes were further verified to interact with C. albicans Cdc4 using a yeast two-hybrid assay. We conclude that in vitro affinity purification using C. albicans Cdc4 generated from E. coli as the bait and proteins from cell lysate of C. albicans cdc4 homozygous null mutant as a source of prey permit the identification of novel proteins that physically interact and functionally associate with C. albicans Cdc4.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Morfogénesis , Ubiquitina-Proteína Ligasas/metabolismo , Candida albicans/química , Proteínas de Ciclo Celular/aislamiento & purificación , Cromatografía de Afinidad , Proteínas F-Box/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA