Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 592: 216953, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38729557

RESUMEN

TGFBR2, a key regulator of the TGFß signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin ß5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFß signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFß signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.


Asunto(s)
Endosomas , Transición Epitelial-Mesenquimal , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Neoplasias Gástricas , Animales , Humanos , Ratones , Línea Celular Tumoral , Endosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Metástasis de la Neoplasia , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Respir Res ; 24(1): 214, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644529

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronically progressive fibrotic pulmonary disease characterized by an uncertain etiology, a poor prognosis, and a paucity of efficacious treatment options. Dexmedetomidine (Dex), an anesthetic-sparing alpha-2 adrenoceptor (α2AR) agonist, plays a crucial role in organ injury and fibrosis. However, the underlying mechanisms of IPF remain unknown. METHODS: In our study, the role of Dex in murine pulmonary fibrosis models was determined by Dex injection intraperitoneally in vivo. Fibroblast activation and myofibroblast differentiation were assessed after Dex treatment in vitro. The activation of MAPK pathway and the expression of Adenosine A2B receptor (ADORA2B) were examined in lung myofibroblasts. Moreover, the role of ADORA2B in Dex suppressing myofibroblast differentiation and pulmonary fibrosis was determined using the ADORA2B agonist BAY60-6583. RESULTS: The results revealed that Dex could inhibit Bleo-induced pulmonary fibrosis in mice. In vitro studies revealed that Dex suppressed TGF-ß-mediated MAPK pathway activation and myofibroblast differentiation. Furthermore, Dex inhibits myofibroblast differentiation and pulmonary fibrosis via downregulating ADORA2B expression. CONCLUSIONS: Our findings suggest Dex as a potential therapeutic agent for pulmonary fibrosis. Dex may alleviate lung fibrosis and myofibroblast differentiation through the ADORA2B-mediated MAPK signaling pathway.


Asunto(s)
Dexmedetomidina , Fibrosis Pulmonar Idiopática , Animales , Ratones , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Receptor de Adenosina A2B/genética , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Fibrosis Pulmonar Idiopática/tratamiento farmacológico
3.
J Hepatol ; 79(6): 1418-1434, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37604269

RESUMEN

BACKGROUND & AIMS: Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression. METHODS: In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines. To investigate the role of CD51 on HCC progression, we used a 3D invasion assay and in vivo bioluminescence imaging. We used periostin-knockout transgenic mice to uncover the role of the tumor microenvironment on CD51 cleavage. Moreover, we used several clinically relevant HCC models, including patient-derived organoids and patient-derived xenografts, to evaluate the therapeutic efficacy of cilengitide in combination with the γ-secretase inhibitor LY3039478. RESULTS: We found that CD51 could undergo transmembrane cleavage by γ-secretase to produce a functional intracellular domain (CD51-ICD). The cleaved CD51-ICD facilitated HCC invasion and metastasis by promoting the transcription of oxidative phosphorylation-related genes. Furthermore, we identified cancer-associated fibroblast-derived periostin as the major driver of CD51 cleavage. Lastly, we showed that cilengitide-based therapy led to a dramatic therapeutic effect when supplemented with LY3039478 in both patient-derived organoid and xenograft models. CONCLUSIONS: In summary, we revealed previously unrecognized mechanisms by which CD51 is involved in HCC progression and uncovered the underlying cause of cilengitide treatment failure, as well as providing evidence supporting the translational prospects of combined CD51-targeted therapy in the clinic. IMPACT AND IMPLICATIONS: Integrin αv (CD51) is a widely recognized pro-tumoral molecule that plays a crucial role in various stages of tumor progression, making it a promising therapeutic target. However, despite early promising results, cilengitide, a specific antagonist of CD51, failed in a phase III clinical trial. This prompted further investigation into the underlying mechanisms of CD51's effects. This study reveals that the γ-secretase complex directly cleaves CD51 to produce an intracellular domain (CD51-ICD), which functions as a pro-tumoral transcriptional regulator and can bypass the inhibitory effects of cilengitide by entering the nucleus. Furthermore, the localization of CD51 in the nucleus is significantly associated with the prognosis of patients with HCC. These findings provide a theoretical basis for re-evaluating cilengitide in clinical settings and highlight the importance of identifying a more precise patient subpopulation for future clinical trials targeting CD51.


Asunto(s)
Carcinoma Hepatocelular , Integrina alfaV , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Secretasas de la Proteína Precursora del Amiloide , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Integrina alfaV/genética , Integrina alfaV/metabolismo , Neoplasias Hepáticas/genética , Microambiente Tumoral
4.
Front Immunol ; 14: 1078055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334348

RESUMEN

Background: There is still a lack of specific indicators to diagnose idiopathic pulmonary fibrosis (IPF). And the role of immune responses in IPF is elusive. In this study, we aimed to identify hub genes for diagnosing IPF and to explore the immune microenvironment in IPF. Methods: We identified differentially expressed genes (DEGs) between IPF and control lung samples using the GEO database. Combining LASSO regression and SVM-RFE machine learning algorithms, we identified hub genes. Their differential expression were further validated in bleomycin-induced pulmonary fibrosis model mice and a meta-GEO cohort consisting of five merged GEO datasets. Then, we used the hub genes to construct a diagnostic model. All GEO datasets met the inclusion criteria, and verification methods, including ROC curve analysis, calibration curve (CC) analysis, decision curve analysis (DCA) and clinical impact curve (CIC) analysis, were performed to validate the reliability of the model. Through the Cell Type Identification by Estimating Relative Subsets of RNA Transcripts algorithm (CIBERSORT), we analyzed the correlations between infiltrating immune cells and hub genes and the changes in diverse infiltrating immune cells in IPF. Results: A total of 412 DEGs were identified between IPF and healthy control samples, of which 283 were upregulated and 129 were downregulated. Through machine learning, three hub genes (ASPN, SFRP2, SLCO4A1) were screened. We confirmed their differential expression using pulmonary fibrosis model mice evaluated by qPCR, western blotting and immunofluorescence staining and analysis of the meta-GEO cohort. There was a strong correlation between the expression of the three hub genes and neutrophils. Then, we constructed a diagnostic model for diagnosing IPF. The areas under the curve were 1.000 and 0.962 for the training and validation cohorts, respectively. The analysis of other external validation cohorts, as well as the CC analysis, DCA, and CIC analysis, also demonstrated strong agreement. There was also a significant correlation between IPF and infiltrating immune cells. The frequencies of most infiltrating immune cells involved in activating adaptive immune responses were increased in IPF, and a majority of innate immune cells showed reduced frequencies. Conclusion: Our study demonstrated that three hub genes (ASPN, SFRP2, SLCO4A1) were associated with neutrophils, and the model constructed with these genes showed good diagnostic value in IPF. There was a significant correlation between IPF and infiltrating immune cells, indicating the potential role of immune regulation in the pathological process of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neutrófilos , Animales , Ratones , Reproducibilidad de los Resultados , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Algoritmos , Bleomicina
5.
J Inflamm Res ; 16: 2503-2519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37337515

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a disease with unclear etiology and a poor prognosis. Although the involvement of neutrophils in IPF pathogenesis has been suggested, the exact nature of this relationship remains unclear. Methods: We analyzed data from the Gene Expression Omnibus (GEO) using immune infiltration analysis, weighted gene co-expression network analysis (WGCNA), and consensus cluster analysis. Neutrophil-related genes and hub genes related to neutrophils were identified and differentially expressed between IPF patients and healthy controls. We also validated the expression differences of hub genes in a bleomycin-induced mice model. Results: Immune infiltration analysis revealed a significantly decreased percentage of neutrophils in the lung tissue of IPF patients compared with healthy controls (P<0.001) in both the train and validation sets. Neutrophil-related genes in IPF were identified by WGCNA, and functional enrichment analysis showed that these genes were mainly involved in the cytokine-cytokine receptor interaction pathway and correlated with lung disease, consistent with DEGs between IPF and healthy controls. Eight hub genes related to neutrophils were identified, including MMP16, ARG1, IL1R2, PROK2, MS4A2, PIR, and ZNF436. Consensus cluster analysis revealed a low neutrophil-infiltrating cluster that was correlated with IPF (P<0.001), and a principal component analysis-generated score could distinguish IPF patients from healthy controls, with an area under the curve of 0.930 in the train set and 0.768 in the validation set. We also constructed a diagnostic model using hub genes related to neutrophils, which showed a reliable diagnostic value with an area under the curve of 0.955 in the train set and 0.995 in the validation set. Conclusion: Our findings provide evidence of a low neutrophil-infiltrating characteristic in the IPF microenvironment and identify hub genes related to neutrophils that may serve as diagnostic biomarkers for the disease.

6.
Mol Pain ; 19: 17448069221148351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36526437

RESUMEN

Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail, consisting of the SSTR2 agonist L-054,264 and the S1PR3 agonist CYM5541, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.


Asunto(s)
Nociceptores , Silimarina , Ratones , Animales , Nociceptores/metabolismo , Calcio/metabolismo , Silimarina/metabolismo , Silimarina/farmacología , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Ganglios Espinales/metabolismo
7.
Int J Biol Macromol ; 226: 291-300, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36481337

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with poor prognosis and few treatment options. Dapper homolog 2 (DACT2), a member of the DACT gene family, plays crucial roles in tissue development and injury. However, its functions and molecular mechanisms in IPF remain largely unknown. We aimed to investigate the role of DACT2 in the development of pulmonary fibrosis and the therapeutic potential of targeting DACT2 related signaling pathways. METHODS: In our study, adeno-associated virus serotype 6 (AAV6)-mediated DACT2 overexpression was assessed in several mice models of experimental pulmonary fibrosis in vivo. The role of DACT2 in lung myofibroblast differentiation was determined by DACT2 overexpression in vitro. The glucose uptake, extracellular acidification rate, intracellular adenosine-triphosphate (ATP) level and lactate levels of myofibroblasts were detected after DACT2 overexpression. The LDHA degradation rate and colocalization with lysosomes were monitored as well. RESULTS: Intratracheal administration of AAV6-mediated DACT2 overexpression apparently attenuated pulmonary fibrosis in experimental pulmonary fibrosis models. In vitro experiments revealed that DACT2 inhibited TGF-ß-induced myofibroblast differentiation by promoting lysosome-mediated LDHA degradation and thus suppressing glycolysis in myofibroblasts. CONCLUSION: In conclusion, our findings support for DACT2 as a novel pharmacological target for pulmonary fibrosis treatments.


Asunto(s)
Fibrosis Pulmonar Idiopática , Miofibroblastos , Animales , Ratones , Miofibroblastos/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Glucólisis , Bleomicina/efectos adversos , Diferenciación Celular , Ratones Endogámicos C57BL
8.
Nat Commun ; 13(1): 4020, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821241

RESUMEN

Male reproductive system ageing is closely associated with deficiency in testosterone production due to loss of functional Leydig cells, which are differentiated from stem Leydig cells (SLCs). However, the relationship between SLC differentiation and ageing remains unknown. In addition, active lipid metabolism during SLC differentiation in the reproductive system requires transportation and processing of substrates among multiple organelles, e.g., mitochondria and endoplasmic reticulum (ER), highlighting the importance of interorganelle contact. Here, we show that SLC differentiation potential declines with disordered intracellular homeostasis during SLC senescence. Mechanistically, loss of the intermediate filament Nestin results in lower differentiation capacity by separating mitochondria-ER contacts (MERCs) during SLC senescence. Furthermore, pharmacological intervention by melatonin restores Nestin-dependent MERCs, reverses SLC differentiation capacity and alleviates male reproductive system ageing. These findings not only explain SLC senescence from a cytoskeleton-dependent MERCs regulation mechanism, but also suggest a promising therapy targeting SLC differentiation for age-related reproductive system diseases.


Asunto(s)
Retículo Endoplásmico , Células Intersticiales del Testículo , Mitocondrias , Envejecimiento/metabolismo , Diferenciación Celular/fisiología , Retículo Endoplásmico/metabolismo , Humanos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Masculino , Mitocondrias/metabolismo , Nestina/metabolismo
11.
Stem Cell Res Ther ; 13(1): 12, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012648

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive deadly fibrotic lung disease with high prevalence and mortality worldwide. The therapeutic potential of mesenchymal stem cells (MSCs) in pulmonary fibrosis may be attributed to the strong paracrine, anti-inflammatory, anti-apoptosis and immunoregulatory effects. However, the mechanisms underlying the therapeutic effects of MSCs in IPF, especially in terms of alveolar type 2 (AT2) cells senescence, are not well understood. The purpose of this study was to evaluate the role of MSCs in NAD metabolism and senescence of AT2 cells in vitro and in vivo. METHODS: MSCs were isolated from human bone marrow. The protective effects of MSCs injection in pulmonary fibrosis were assessed via bleomycin mouse models. The senescence of AT2 cells co-cultured with MSCs was evaluated by SA-ß-galactosidase assay, immunofluorescence staining and Western blotting. NAD+ level and NAMPT expression in AT2 cells affected by MSCs were determined in vitro and in vivo. FK866 and NAMPT shRNA vectors were used to determine the role of NAMPT in MSCs inhibiting AT2 cells senescence. RESULTS: We proved that MSCs attenuate bleomycin-induced pulmonary fibrosis in mice. Senescence of AT2 cells was alleviated in MSCs-treated pulmonary fibrosis mice and when co-cultured with MSCs in vitro. Mechanistic studies showed that NAD+ and NAMPT levels were rescued in AT2 cells co-cultured with MSCs and MSCs could suppress AT2 cells senescence mainly via suppressing lysosome-mediated NAMPT degradation. CONCLUSIONS: MSCs attenuate AT2 cells senescence by upregulating NAMPT expression and NAD+ levels, thus exerting protective effects in pulmonary fibrosis.


Asunto(s)
Citocinas , Fibrosis Pulmonar Idiopática , Células Madre Mesenquimatosas , Nicotinamida Fosforribosiltransferasa , Células Epiteliales Alveolares/metabolismo , Animales , Senescencia Celular , Citocinas/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo
12.
Eur Respir J ; 59(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34625478

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is characterised by aberrant proliferation of activated myofibroblasts and pathological remodelling of the extracellular matrix. Previous studies have revealed that the intermediate filament protein nestin plays key roles in tissue regeneration and wound healing in different organs. Whether nestin plays a critical role in the pathogenesis of IPF needs to be clarified. METHODS: Nestin expression in lung tissues from bleomycin-treated mice and IPF patients was determined. Transfection with nestin short hairpin RNA vectors in vitro that regulated transcription growth factor (TGF)-ß/Smad signalling was conducted. Biotinylation assays to observe plasma membrane TßRI, TßRI endocytosis and TßRI recycling after nestin knockdown were performed. Adeno-associated virus serotype (AAV)6-mediated nestin knockdown was assessed in vivo. RESULTS: We found that nestin expression was increased in a murine pulmonary fibrosis model and IPF patients, and that the upregulated protein primarily localised in lung α-smooth muscle actin-positive myofibroblasts. Mechanistically, we determined that nestin knockdown inhibited TGF-ß signalling by suppressing recycling of TßRI to the cell surface and that Rab11 was required for the ability of nestin to promote TßRI recycling. In vivo, we found that intratracheal administration of AAV6-mediated nestin knockdown significantly alleviated pulmonary fibrosis in multiple experimental mice models. CONCLUSION: Our findings reveal a pro-fibrotic function of nestin partially through facilitating Rab11-dependent recycling of TßRI and shed new light on pulmonary fibrosis treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta , Animales , Bleomicina , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones , Nestina/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
13.
Am J Respir Cell Mol Biol ; 66(2): 158-170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34705621

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with high mortality and morbidity. ASPN (asporin), a member of the small leucine-rich proteoglycan family, plays crucial roles in tissue injury and regeneration. However, the precise pathophysiological role of ASPN and its molecular mechanisms in IPF remain unknown. We sought to investigate the role of ASPN during the development of pulmonary fibrosis and the therapeutic potential of targeting ASPN-related signaling pathways. In our study, three microarray datasets were downloaded from the Gene Expression Omnibus database, and differentially expressed genes were screened out by bioinformatic analysis. Hub genes were selected from the protein-protein interaction network. ASPN was examined in lung tissues from pulmonary fibrosis mouse models, and the role of ASPN in transforming growth factor (TGF)-ß/Smad signaling was determined by transfection with ASPN shRNA vectors in vitro. Biotinylation assays were conducted to measure plasma membrane TFG-ß receptor I (TßRI) and TßRI recycling after ASPN knockdown. The results showed ASPN expression was increased in the lungs of pulmonary fibrosis mouse models, and ASPN was primarily localized in α-SMA+ myofibroblasts. In vitro experiments proved that ASPN knockdown inhibited TGF-ß/Smad signaling and myofibroblast differentiation by regulating the stability of TßRI. Further molecular mechanisms revealed that ASPN knockdown inhibited TGF-ß/Smad signaling by suppressing recycling of TßRI to the cell surface in a Rab11-dependent manner and facilitated lysosome-mediated degradation of TßRI. In conclusion, our findings provide important evidence for the use of ASPN as a novel pharmacological target for treating pulmonary fibrosis.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Pulmón/patología , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Mapas de Interacción de Proteínas , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Proteínas de Unión al GTP rab/genética
14.
Cell Rep Methods ; 1(1)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34318289

RESUMEN

High-throughput physiological assays lose single-cell resolution, precluding subtype-specific analyses of activation mechanism and drug effects. We demonstrate APPOINT (automated physiological phenotyping of individual neuronal types), a physiological assay platform combining calcium imaging, robotic liquid handling, and automated analysis to generate physiological activation profiles of single neurons at large scale. Using unbiased techniques, we quantify responses to sequential stimuli, enabling subgroup identification by physiology and probing of distinct mechanisms of neuronal activation within subgroups. Using APPOINT, we quantify primary sensory neuron activation by metabotropic receptor agonists and identify potential contributors to pain signaling. We expand the role of neuroimmune interactions by showing that human serum directly activates sensory neurons, elucidating a new potential pain mechanism. Finally, we apply APPOINT to develop a high-throughput, all-optical approach for quantification of activation threshold and pharmacologically validate contributions of ion channel families to optical activation.


Asunto(s)
Dolor , Células Receptoras Sensoriales , Humanos , Transducción de Señal , Ensayos Analíticos de Alto Rendimiento
16.
Stem Cell Res Ther ; 12(1): 65, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461597

RESUMEN

BACKGROUND: Cancer cachexia is a wasting syndrome that is quite common in terminal-stage cancer patients. Cancer-related anemia is one of the main features of cancer cachexia and mostly results in a poor prognosis. The disadvantages of the current therapies are obvious, but few new treatments have been developed because the pathological mechanism remains unclear. METHODS: C57BL/6 mice were subcutaneously injected with Lewis lung carcinoma cells to generate a cancer-related anemia model. The treated group received daily intraperitoneal injections of SB505124. Blood parameters were determined with a routine blood counting analyzer. Erythroid cells and hematopoietic stem/progenitor cells were analyzed by flow cytometry. The microarchitecture changes of the femurs were determined by micro-computed tomography scans. Smad2/3 phosphorylation was analyzed by immunofluorescence and Western blotting. The changes in the hematopoietic stem cell niche were revealed by qPCR analysis of both fibrosis-related genes and hematopoietic genes, fibroblastic colony-forming unit assays, and lineage differentiation of mesenchymal stromal cells. RESULTS: The mouse model exhibited hematopoietic suppression, marked by a decrease of erythrocytes in the peripheral blood, as well as an increase of immature erythroblasts and reduced differentiation of multipotent progenitors in the bone marrow. The ratio of bone volume/total volume, trabecular number, and cortical wall thickness all appeared to decrease, and the increased osteoclast number has led to the release of latent TGFß and TGFß signaling over-activation. Excessive TGFß deteriorated the hematopoietic stem cell niche, inducing fibrosis of the bone marrow as well as the transition of mesenchymal stromal cells. Treatment with SB505124, a small-molecule inhibitor of TGFß signaling, significantly attenuated the symptoms of cancer-related anemia in this model, as evidenced by the increase of erythrocytes in the peripheral blood and the normalized proportion of erythroblast cell clusters. Meanwhile, hindered hematopoiesis and deteriorated hematopoietic stem cell niche were also shown to be restored with SB505124 treatment. CONCLUSION: This study investigated the role of TGFß released by bone remodeling in the progression of cancer-related anemia and revealed a potential therapeutic approach for relieving defects in hematopoiesis.


Asunto(s)
Anemia , Neoplasias , Anemia/tratamiento farmacológico , Animales , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Ratones , Ratones Endogámicos C57BL , Nicho de Células Madre , Factor de Crecimiento Transformador beta/genética , Microtomografía por Rayos X
17.
Nat Commun ; 10(1): 5043, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695040

RESUMEN

Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that Nestin-knockdown cells were more sensitive to oxidative stress in non-small cell lung cancer (NSCLC). However, the molecular mechanism by which Nestin protects cells from oxidative damage remains unclear. Here, we identify a feedback loop between Nestin and Nrf2 maintaining the redox homeostasis. Mechanistically, the ESGE motif of Nestin interacts with the Kelch domain of Keap1 and competes with Nrf2 for Keap1 binding, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant enzyme generation. Interestingly, we also map that the antioxidant response elements (AREs) in the Nestin promoter are responsible for its induction via Nrf2. Taken together, our results indicate that the Nestin-Keap1-Nrf2 axis regulates cellular redox homeostasis and confers oxidative stress resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Homeostasis/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Nestina/metabolismo , Nestina/farmacología , Células A549 , Animales , Elementos de Respuesta Antioxidante/fisiología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nestina/genética , Estrés Oxidativo , Ubiquitinación/efectos de los fármacos
18.
Theranostics ; 8(21): 5929-5944, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613272

RESUMEN

Rationale: Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic strategy for the acute ischemic stroke (AIS). However, the poor targeted migration and low engraftment in ischemic lesions restrict their treatment efficacy. The ischemic brain lesions express a specific chemokine profile, while cultured MSCs lack the set of corresponding receptors. Thus, we hypothesize that overexpression of certain chemokine receptor might help in MSCs homing and improve therapeutic efficacy. Methods: Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we identified that CCL2 is one of the most highly expressed chemokines in the ipsilateral hemisphere. Then, we genetically transduced the corresponding receptor, CCR2 to the MSCs and quantified the cell retention of MSCCCR2 compared to the MSCdtomato control. Results: MSCCCR2 exhibited significantly enhanced migration to the ischemic lesions and improved the neurological outcomes. Brain edema and blood-brain barrier (BBB) leakage levels were also found to be much lower in the MSCCCR2-treated rats than the MSCdtomato group. Moreover, this BBB protection led to reduced inflammation infiltration and reactive oxygen species (ROS) generation. Similar results were also confirmed using the in vitro BBB model. Furthermore, genome-wide RNA sequencing (RNA-seq) analysis revealed that peroxiredoxin4 (PRDX4) was highly expressed in MSCs, which mainly contributed to their antioxidant impacts on MCAO rats and oxygen-glucose deprivation (OGD)-treated endothelium. Conclusion: Taken together, this study suggests that overexpression of CCR2 on MSCs enhances their targeted migration to the ischemic hemisphere and improves the therapeutic outcomes, which is attributed to the PRDX4-mediated BBB preservation.


Asunto(s)
Isquemia Encefálica/terapia , Movimiento Celular , Trasplante de Células/métodos , Células Madre Mesenquimatosas/fisiología , Peroxirredoxinas/metabolismo , Receptores CCR2/metabolismo , Accidente Cerebrovascular/terapia , Animales , Barrera Hematoencefálica/fisiología , Edema Encefálico/patología , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas Sprague-Dawley , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...